Hongxu Chen, Wei Xia, Nan Wang, Yang Liu, Penghui Fan, Song Wang, Sanxi Li, Jie Liu, Tao Tang, Ailing Zhang, Zhan Ding, Wei Wu, Qi Chen
{"title":"Flame retardancy of biodegradable polylactic acid with piperazine pyrophosphate and melamine cyanurate as flame retardant","authors":"Hongxu Chen, Wei Xia, Nan Wang, Yang Liu, Penghui Fan, Song Wang, Sanxi Li, Jie Liu, Tao Tang, Ailing Zhang, Zhan Ding, Wei Wu, Qi Chen","doi":"10.1177/07349041221093546","DOIUrl":null,"url":null,"abstract":"A flame-retardant polylactic acid composite added with piperazine pyrophosphate and melamine cyanurate was developed. Piperazine pyrophosphate and melamine cyanurate showed synergistic effect in the polylactic acid composites. When the weight ratio of piperazine pyrophosphate to melamine cyanurate was 4:1 and the loading of the piperazine pyrophosphate/melamine cyanurate flame retardant was 15 wt.%, the prepared polylactic acid composites passed V-0 rating in the UL-94 test and achieved the high limit oxygen index value of 34.9%. The cone calorimeter test result confirmed that the addition of piperazine pyrophosphate/melamine cyanurate flame retardant reduced the total heat release value of polylactic acid. The effect of polylactic acid biodegradation on the flame retardancy of polylactic acid composite was further discussed. The biodegraded polylactic acid, which was exposed to the air for 8 months, showed high flame retardancy and even passed V-0 rating in the UL-94 test without the addition of piperazine pyrophosphate/melamine cyanurate flame retardant, which proved that biodegradation could affect the flame retardancy of polylactic acid.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041221093546","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17
Abstract
A flame-retardant polylactic acid composite added with piperazine pyrophosphate and melamine cyanurate was developed. Piperazine pyrophosphate and melamine cyanurate showed synergistic effect in the polylactic acid composites. When the weight ratio of piperazine pyrophosphate to melamine cyanurate was 4:1 and the loading of the piperazine pyrophosphate/melamine cyanurate flame retardant was 15 wt.%, the prepared polylactic acid composites passed V-0 rating in the UL-94 test and achieved the high limit oxygen index value of 34.9%. The cone calorimeter test result confirmed that the addition of piperazine pyrophosphate/melamine cyanurate flame retardant reduced the total heat release value of polylactic acid. The effect of polylactic acid biodegradation on the flame retardancy of polylactic acid composite was further discussed. The biodegraded polylactic acid, which was exposed to the air for 8 months, showed high flame retardancy and even passed V-0 rating in the UL-94 test without the addition of piperazine pyrophosphate/melamine cyanurate flame retardant, which proved that biodegradation could affect the flame retardancy of polylactic acid.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).