{"title":"Generalized tilting theory in functor categories","authors":"Xi Tang","doi":"10.1017/S0017089523000162","DOIUrl":null,"url":null,"abstract":"Abstract This paper is devoted to the study of generalized tilting theory of functor categories in different levels. First, we extend Miyashita’s proof (Math Z 193:113–146,1986) of the generalized Brenner–Butler theorem to arbitrary functor categories \n$\\mathop{\\textrm{Mod}}\\nolimits\\!(\\mathcal{C})$\n with \n$\\mathcal{C}$\n an annuli variety. Second, a hereditary and complete cotorsion pair generated by a generalized tilting subcategory \n$\\mathcal{T}$\n of \n$\\mathop{\\textrm{Mod}}\\nolimits \\!(\\mathcal{C})$\n is constructed. Some applications of these two results include the equivalence of Grothendieck groups \n$K_0(\\mathcal{C})$\n and \n$K_0(\\mathcal{T})$\n , the existences of a new abelian model structure on the category of complexes \n$\\mathop{\\textrm{C}}\\nolimits \\!(\\!\\mathop{\\textrm{Mod}}\\nolimits\\!(\\mathcal{C}))$\n , and a t-structure on the derived category \n$\\mathop{\\textrm{D}}\\nolimits \\!(\\!\\mathop{\\textrm{Mod}}\\nolimits \\!(\\mathcal{C}))$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089523000162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper is devoted to the study of generalized tilting theory of functor categories in different levels. First, we extend Miyashita’s proof (Math Z 193:113–146,1986) of the generalized Brenner–Butler theorem to arbitrary functor categories
$\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C})$
with
$\mathcal{C}$
an annuli variety. Second, a hereditary and complete cotorsion pair generated by a generalized tilting subcategory
$\mathcal{T}$
of
$\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C})$
is constructed. Some applications of these two results include the equivalence of Grothendieck groups
$K_0(\mathcal{C})$
and
$K_0(\mathcal{T})$
, the existences of a new abelian model structure on the category of complexes
$\mathop{\textrm{C}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C}))$
, and a t-structure on the derived category
$\mathop{\textrm{D}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C}))$
.
本文致力于在不同层次上研究函子范畴的广义倾斜理论。首先,我们将广义Brenner–Butler定理的Miyashita证明(Math Z 193:113–1461986)推广到任意函子范畴$\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C})$与$\mathcal{C}$是环状变体。其次,由$\mathop{\textrm{Mod}}\nolimits\的广义倾斜子类别$\mathcal{T}$生成的一个遗传完全余子对!构造了(\mathcal{C})$。这两个结果的一些应用包括Grothendieck群$K_0(\mathcal{C})$和$K_0!(\!\mathop{\textrm{Mod}}\nolimits\!(\!\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C}))$。