An open source crash course on parameter estimation of computational models using a Bayesian optimization approach

Mojtaba Barzegari, L. Geris
{"title":"An open source crash course on parameter estimation of computational models using a Bayesian optimization approach","authors":"Mojtaba Barzegari, L. Geris","doi":"10.21105/jose.00089","DOIUrl":null,"url":null,"abstract":"Parameter estimation is a crucial aspect of computational modeling projects, especially the ones that deal with ordinary differential equations (ODE) or partial differential equation (PDE) models. Well-known examples in this regard are models derived from a basic balance or conservation law, such as mass balance or heat transfer problems. For real-world applications, these equations contain some coefficients that cannot be obtained directly from published scientific materials or experimental studies (Dehghan, 2001). One of the best solutions to this challenge is constructing an inverse problem.","PeriodicalId":75094,"journal":{"name":"The Journal of open source education","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of open source education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/jose.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Parameter estimation is a crucial aspect of computational modeling projects, especially the ones that deal with ordinary differential equations (ODE) or partial differential equation (PDE) models. Well-known examples in this regard are models derived from a basic balance or conservation law, such as mass balance or heat transfer problems. For real-world applications, these equations contain some coefficients that cannot be obtained directly from published scientific materials or experimental studies (Dehghan, 2001). One of the best solutions to this challenge is constructing an inverse problem.
一个使用贝叶斯优化方法的计算模型参数估计的开源速成课程
参数估计是计算建模项目的一个关键方面,尤其是处理常微分方程(ODE)或偏微分方程(PDE)模型的项目。这方面的众所周知的例子是从基本平衡或守恒定律导出的模型,例如质量平衡或传热问题。对于现实世界的应用,这些方程包含一些系数,这些系数无法直接从已发表的科学材料或实验研究中获得(Dehghan,2001)。解决这一挑战的最佳方案之一是构造一个反问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信