M. He, Jiapei Zhou, Panfeng Li, B. Yang, Haoteng Wang, Jing Wang
{"title":"Novel approach to predict the spatial distributions of hydraulic conductivity of rock mass using convolutional neural networks","authors":"M. He, Jiapei Zhou, Panfeng Li, B. Yang, Haoteng Wang, Jing Wang","doi":"10.1144/qjegh2021-169","DOIUrl":null,"url":null,"abstract":"Characterizing the spatial distributions of hydraulic conductivity of rock mass is important in geoscience and engineering disciplines. In this paper, the architecture of CNN is proposed to predict the spatial distributions of hydraulic conductivity based on limited geologic factors. The performance of CNN model is evaluated using the new data of hydraulic conductivity. A comparative study with the empirical method is performed to validate the reliability of CNN model. The effect of weathering and unloading on the spatial distributions of hydraulic conductivity is studied using the CNN model. The result shows that the hydraulic conductivity predicted by CNN model is within the error range of 5% compared to the Lugeon borehole tests. The predictive accuracy of the CNN method is higher than the estimations of the empirical relations. The spatial distributions of hydraulic conductivity versus depth can be divided into three stages. At first stage, the hydraulic conductivity is slightly reduced with the increasing of depth. Increasing to the depth range of 300-600 m (second stage), the hydraulic conductivity is slightly reduced as a function of lower weathering degree. At last stage, the hydraulic conductivity is not changed by the weathering, and converge to a constant with the depth increasing.","PeriodicalId":20937,"journal":{"name":"Quarterly Journal of Engineering Geology and Hydrogeology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Engineering Geology and Hydrogeology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/qjegh2021-169","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Characterizing the spatial distributions of hydraulic conductivity of rock mass is important in geoscience and engineering disciplines. In this paper, the architecture of CNN is proposed to predict the spatial distributions of hydraulic conductivity based on limited geologic factors. The performance of CNN model is evaluated using the new data of hydraulic conductivity. A comparative study with the empirical method is performed to validate the reliability of CNN model. The effect of weathering and unloading on the spatial distributions of hydraulic conductivity is studied using the CNN model. The result shows that the hydraulic conductivity predicted by CNN model is within the error range of 5% compared to the Lugeon borehole tests. The predictive accuracy of the CNN method is higher than the estimations of the empirical relations. The spatial distributions of hydraulic conductivity versus depth can be divided into three stages. At first stage, the hydraulic conductivity is slightly reduced with the increasing of depth. Increasing to the depth range of 300-600 m (second stage), the hydraulic conductivity is slightly reduced as a function of lower weathering degree. At last stage, the hydraulic conductivity is not changed by the weathering, and converge to a constant with the depth increasing.
期刊介绍:
Quarterly Journal of Engineering Geology and Hydrogeology is owned by the Geological Society of London and published by the Geological Society Publishing House.
Quarterly Journal of Engineering Geology & Hydrogeology (QJEGH) is an established peer reviewed international journal featuring papers on geology as applied to civil engineering mining practice and water resources. Papers are invited from, and about, all areas of the world on engineering geology and hydrogeology topics. This includes but is not limited to: applied geophysics, engineering geomorphology, environmental geology, hydrogeology, groundwater quality, ground source heat, contaminated land, waste management, land use planning, geotechnics, rock mechanics, geomaterials and geological hazards.
The journal publishes the prestigious Glossop and Ineson lectures, research papers, case studies, review articles, technical notes, photographic features, thematic sets, discussion papers, editorial opinion and book reviews.