Thermo-Mechanical Topology Optimization of 3D Heat Guiding Structures for Electronics Packaging

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shiva Farzinazar, Z. Ren, Jung‐Youn Lim, Jae Choon Kim, Jaeho Lee
{"title":"Thermo-Mechanical Topology Optimization of 3D Heat Guiding Structures for Electronics Packaging","authors":"Shiva Farzinazar, Z. Ren, Jung‐Youn Lim, Jae Choon Kim, Jaeho Lee","doi":"10.1115/1.4053948","DOIUrl":null,"url":null,"abstract":"\n Heterogeneous and complex electronic packages may require unique thermo-mechanical structures to provide optimal heat guiding. In particular, when a heat source and a heat sink are not aligned, conventional thermal management methods providing uniform heat dissipation may not be appropriate. Here we present a topology optimization method to find thermally conductive and mechanically stable structures for optimal heat guiding under various heat source-sink arrangements. To exploit the capabilities, we consider complex heat guiding scenarios and 3D serpentine structures to carry the heat with corner angles ranging from 30° to 90°. While the thermal objective function is defined to minimize the temperature gradient, the mechanical objective function is defined to maximize the stiffness with a volume constraint. Our simulations show that the optimized structures can have a thermal resistance of less than 32% and stiffness greater than 43% compared to reference structures with no topology optimization at an identical volume fraction. The significant difference in thermal resistance is attributed to a thermally dead volume near the sharp corners. As a proof-of-concept experiment, we have created 3D heat guiding structures using a selective laser melting technique and characterized their thermal properties using an infrared thermography technique. The experiment shows the thermal resistance of the thermally optimized structure is 29% less than that of the reference structure. These results present unique capabilities of topology optimization and 3D manufacturing in enabling optimal heat guiding for heterogeneous systems and advancing the state-of-the-art in electronics packaging.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4053948","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Heterogeneous and complex electronic packages may require unique thermo-mechanical structures to provide optimal heat guiding. In particular, when a heat source and a heat sink are not aligned, conventional thermal management methods providing uniform heat dissipation may not be appropriate. Here we present a topology optimization method to find thermally conductive and mechanically stable structures for optimal heat guiding under various heat source-sink arrangements. To exploit the capabilities, we consider complex heat guiding scenarios and 3D serpentine structures to carry the heat with corner angles ranging from 30° to 90°. While the thermal objective function is defined to minimize the temperature gradient, the mechanical objective function is defined to maximize the stiffness with a volume constraint. Our simulations show that the optimized structures can have a thermal resistance of less than 32% and stiffness greater than 43% compared to reference structures with no topology optimization at an identical volume fraction. The significant difference in thermal resistance is attributed to a thermally dead volume near the sharp corners. As a proof-of-concept experiment, we have created 3D heat guiding structures using a selective laser melting technique and characterized their thermal properties using an infrared thermography technique. The experiment shows the thermal resistance of the thermally optimized structure is 29% less than that of the reference structure. These results present unique capabilities of topology optimization and 3D manufacturing in enabling optimal heat guiding for heterogeneous systems and advancing the state-of-the-art in electronics packaging.
电子封装三维热导结构的热机械拓扑优化
异质和复杂的电子封装可能需要独特的热机械结构来提供最佳的热引导。特别地,当热源和散热器不对齐时,提供均匀散热的传统热管理方法可能不合适。在这里,我们提出了一种拓扑优化方法,以找到在各种热源-散热器布置下用于最佳热引导的导热和机械稳定结构。为了利用这些功能,我们考虑了复杂的热引导场景和3D蛇形结构,以在30°至90°的转角范围内输送热量。当热目标函数被定义为使温度梯度最小化时,机械目标函数则被定义为在体积约束下使刚度最大化。我们的模拟表明,与在相同体积分数下没有拓扑优化的参考结构相比,优化的结构可以具有小于32%的热阻和大于43%的刚度。热阻的显著差异归因于尖角附近的热死体积。作为概念验证实验,我们使用选择性激光熔化技术创建了3D导热结构,并使用红外热成像技术表征了其热性能。实验表明,热优化结构的热阻比参考结构的热阻低29%。这些结果展示了拓扑优化和3D制造的独特能力,为异构系统提供了最佳的热引导,并推进了电子封装的最先进技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electronic Packaging
Journal of Electronic Packaging 工程技术-工程:电子与电气
CiteScore
4.90
自引率
6.20%
发文量
44
审稿时长
3 months
期刊介绍: The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems. Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信