On the eigenstructure of covariance matrices with divergent spikes

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Simona Diaconu
{"title":"On the eigenstructure of covariance matrices with divergent spikes","authors":"Simona Diaconu","doi":"10.3150/22-bej1498","DOIUrl":null,"url":null,"abstract":"For a generalization of Johnstone's spiked model, a covariance matrix with eigenvalues all one but $M$ of them, the number of features $N$ comparable to the number of samples $n: N=N(n), M=M(n), \\gamma^{-1} \\leq \\frac{N}{n} \\leq \\gamma$ where $\\gamma \\in (0,\\infty),$ we obtain consistency rates in the form of CLTs for separated spikes tending to infinity fast enough whenever $M$ grows slightly slower than $n: \\lim_{n \\to \\infty}{\\frac{\\sqrt{\\log{n}}}{\\log{\\frac{n}{M(n)}}}}=0.$ Our results fill a gap in the existing literature in which the largest range covered for the number of spikes has been $o(n^{1/6})$ and reveal a certain degree of flexibility for the centering in these CLTs inasmuch as it can be empirical, deterministic, or a sum of both. Furthermore, we derive consistency rates of their corresponding empirical eigenvectors to their true counterparts, which turn out to depend on the relative growth of these eigenvalues.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1498","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For a generalization of Johnstone's spiked model, a covariance matrix with eigenvalues all one but $M$ of them, the number of features $N$ comparable to the number of samples $n: N=N(n), M=M(n), \gamma^{-1} \leq \frac{N}{n} \leq \gamma$ where $\gamma \in (0,\infty),$ we obtain consistency rates in the form of CLTs for separated spikes tending to infinity fast enough whenever $M$ grows slightly slower than $n: \lim_{n \to \infty}{\frac{\sqrt{\log{n}}}{\log{\frac{n}{M(n)}}}}=0.$ Our results fill a gap in the existing literature in which the largest range covered for the number of spikes has been $o(n^{1/6})$ and reveal a certain degree of flexibility for the centering in these CLTs inasmuch as it can be empirical, deterministic, or a sum of both. Furthermore, we derive consistency rates of their corresponding empirical eigenvectors to their true counterparts, which turn out to depend on the relative growth of these eigenvalues.
具有发散尖峰的协方差矩阵的特征结构
对于Johnstone的尖刺模型的推广,协方差矩阵的特征值除了$M$之外都是,特征数量$N$与样本数量$n: N=N(n), M=M(n), \gamma^{-1} \leq \frac{N}{n} \leq \gamma$相当,其中$\gamma \in (0,\infty),$我们以clt的形式获得一致性率,当$M$的增长速度略慢于$n: \lim_{n \to \infty}{\frac{\sqrt{\log{n}}}{\log{\frac{n}{M(n)}}}}=0.$时,分离的峰值趋于无穷大。我们的结果填补了现有文献中的空白,其中峰值数量覆盖的最大范围是$o(n^{1/6})$,并揭示了这些clt中定心的一定程度的灵活性因为它可以是经验的,确定的,或两者的总和。此外,我们推导出它们对应的经验特征向量与它们的真对应物的一致性率,这取决于这些特征值的相对增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信