{"title":"Solar prominences: theory and models","authors":"Sarah E. Gibson","doi":"10.1007/s41116-018-0016-2","DOIUrl":null,"url":null,"abstract":"<p>Magnetic fields suspend the relatively cool material of solar prominences in an otherwise hot corona. A comprehensive understanding of solar prominences ultimately requires complex and dynamic models, constrained and validated by observations spanning the solar atmosphere. We obtain the core of this understanding from observations that give us information about the structure of the “magnetic skeleton” that supports and surrounds the prominence. Energetically-sophisticated magnetohydrodynamic simulations then add flesh and blood to the skeleton, demonstrating how a thermally varying plasma may pulse through to form the prominence, and how the plasma and magnetic fields dynamically interact.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"15 1","pages":""},"PeriodicalIF":23.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41116-018-0016-2","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s41116-018-0016-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 70
Abstract
Magnetic fields suspend the relatively cool material of solar prominences in an otherwise hot corona. A comprehensive understanding of solar prominences ultimately requires complex and dynamic models, constrained and validated by observations spanning the solar atmosphere. We obtain the core of this understanding from observations that give us information about the structure of the “magnetic skeleton” that supports and surrounds the prominence. Energetically-sophisticated magnetohydrodynamic simulations then add flesh and blood to the skeleton, demonstrating how a thermally varying plasma may pulse through to form the prominence, and how the plasma and magnetic fields dynamically interact.
期刊介绍:
Living Reviews in Solar Physics is a peer-reviewed, full open access, and exclusively online journal, publishing freely available reviews of research in all areas of solar and heliospheric physics. Articles are solicited from leading authorities and are directed towards the scientific community at or above the graduate-student level. The articles in Living Reviews provide critical reviews of the current state of research in the fields they cover. They evaluate existing work, place it in a meaningful context, and suggest areas where more work and new results are needed. Articles also offer annotated insights into the key literature and describe other available resources. Living Reviews is unique in maintaining a suite of high-quality reviews, which are kept up-to-date by the authors. This is the meaning of the word "living" in the journal''s title.