Combining sensors and surveys to study social interactions: A case of four science conferences

Mathieu Génois, M. Zens, Marcos Oliveira, Clemens M. Lechner, Johann Schaible, M. Strohmaier
{"title":"Combining sensors and surveys to study social interactions: A case of four science conferences","authors":"Mathieu Génois, M. Zens, Marcos Oliveira, Clemens M. Lechner, Johann Schaible, M. Strohmaier","doi":"10.5964/ps.9957","DOIUrl":null,"url":null,"abstract":"\n We present a unique collection of four data sets to study social behaviour, collected during international scientific conferences. Interactions between participants were tracked using the SocioPatterns platform, which allows collecting face-to-face physical proximity events every 20 seconds. Through accompanying surveys, we gathered extensive information about the participants: sociodemographic characteristics, Big Five personality traits, DIAMONDS situation perceptions, measure of scientific attractiveness, motivations for attending the conferences, and perceptions of the crowd. Linking the sensor and survey data provides a rich window into social behaviour. At the individual level, the data sets allow personality scientists to investigate individual differences in social behaviour and pinpoint which individual characteristics (e.g., social roles, personality traits, situation perceptions) drive these individual differences. At the group level, the data allow to study the mechanisms responsible for interacting patterns within a scientific crowd during a social, networking and idea-sharing event.","PeriodicalId":74421,"journal":{"name":"Personality science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personality science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5964/ps.9957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a unique collection of four data sets to study social behaviour, collected during international scientific conferences. Interactions between participants were tracked using the SocioPatterns platform, which allows collecting face-to-face physical proximity events every 20 seconds. Through accompanying surveys, we gathered extensive information about the participants: sociodemographic characteristics, Big Five personality traits, DIAMONDS situation perceptions, measure of scientific attractiveness, motivations for attending the conferences, and perceptions of the crowd. Linking the sensor and survey data provides a rich window into social behaviour. At the individual level, the data sets allow personality scientists to investigate individual differences in social behaviour and pinpoint which individual characteristics (e.g., social roles, personality traits, situation perceptions) drive these individual differences. At the group level, the data allow to study the mechanisms responsible for interacting patterns within a scientific crowd during a social, networking and idea-sharing event.
结合传感器和调查研究社会互动:以四次科学会议为例
我们提出了一个独特的收集四个数据集来研究社会行为,收集在国际科学会议。参与者之间的互动使用socioppatterns平台进行跟踪,该平台允许每20秒收集一次面对面的物理接近事件。通过附带的调查,我们收集了关于参与者的广泛信息:社会人口特征、五大人格特征、DIAMONDS情境感知、科学吸引力测量、参加会议的动机以及对人群的感知。将传感器和调查数据联系起来,为研究社会行为提供了一个丰富的窗口。在个人层面上,这些数据集允许人格科学家调查社会行为中的个体差异,并确定哪些个体特征(例如,社会角色、人格特征、情境感知)驱动了这些个体差异。在群体层面,这些数据允许研究在社交、网络和思想分享事件中,科学人群中负责互动模式的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信