Bioenveloping Inorganic Filler-Based Eggshell Wastes for Enhancing the Properties of Natural Rubber Biocomposites

IF 0.9 Q4 ENGINEERING, MECHANICAL
H. Moustafa, S. El‐Mogy, S. Ibrahim, A. Awad, N. Darwish
{"title":"Bioenveloping Inorganic Filler-Based Eggshell Wastes for Enhancing the Properties of Natural Rubber Biocomposites","authors":"H. Moustafa, S. El‐Mogy, S. Ibrahim, A. Awad, N. Darwish","doi":"10.2346/tire.20.20002","DOIUrl":null,"url":null,"abstract":"\n In this study, eggshell (ES) wastes were used as a renewable reinforcing material in natural rubber (NR) composite to limit carbon production. Long bio-alkyd resin (LAR) was also used to envelope the inorganic ES particles and to aid in dispersing the filler in the NR matrix. The effect of the coated ES filler (ESR) in the rubber mix on the morphology, mechanical properties, and swelling was investigated. The ES filler and its biocomposites were characterized by X-ray fluorescence, scanning electron microscopy, Fourier transform infrared imaging microscope (FT-IR-IM), differential scanning calorimetry (DSC), and thermogravimetric analysis. The morphological data reveal that the resin enhances the dispersion of the ES filler in the NR matrix. These data were confirmed by the results obtained from FT-IR-IM. The swelling and mechanical properties were significantly improved when the coated filler was used in NR matrix, especially at 20 wt.% ESR. DSC thermograms revealed that the increase in the resin caused the glass transition temperature (Tg) to be shifted to a lower temperature. The obtained results show that the bioenveloping ESR can be used as potential alternative for green tire and vehicle applications rather than conventional petroleum-based filler.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/tire.20.20002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, eggshell (ES) wastes were used as a renewable reinforcing material in natural rubber (NR) composite to limit carbon production. Long bio-alkyd resin (LAR) was also used to envelope the inorganic ES particles and to aid in dispersing the filler in the NR matrix. The effect of the coated ES filler (ESR) in the rubber mix on the morphology, mechanical properties, and swelling was investigated. The ES filler and its biocomposites were characterized by X-ray fluorescence, scanning electron microscopy, Fourier transform infrared imaging microscope (FT-IR-IM), differential scanning calorimetry (DSC), and thermogravimetric analysis. The morphological data reveal that the resin enhances the dispersion of the ES filler in the NR matrix. These data were confirmed by the results obtained from FT-IR-IM. The swelling and mechanical properties were significantly improved when the coated filler was used in NR matrix, especially at 20 wt.% ESR. DSC thermograms revealed that the increase in the resin caused the glass transition temperature (Tg) to be shifted to a lower temperature. The obtained results show that the bioenveloping ESR can be used as potential alternative for green tire and vehicle applications rather than conventional petroleum-based filler.
生物包膜无机填料基蛋壳废弃物增强天然橡胶生物复合材料性能的研究
在本研究中,蛋壳(ES)废料被用作天然橡胶(NR)复合材料中的可再生增强材料,以限制碳的产生。长型生物醇酸树脂(LAR)也用于包覆无机ES颗粒,并有助于将填料分散在NR基体中。研究了涂层ES填料(ESR)在橡胶混合物中对其形态、力学性能和溶胀性的影响。采用X射线荧光、扫描电子显微镜、傅立叶变换红外成像显微镜(FT-IR-IM)、差示扫描量热法(DSC)和热重分析对ES填料及其生物复合材料进行了表征。形态数据表明,树脂增强了ES填料在NR基体中的分散性。通过FT-IR-IM获得的结果证实了这些数据。当涂层填料用于NR基体时,尤其是在20wt.%ESR下,溶胀和机械性能显著改善。DSC热谱图显示,树脂的增加导致玻璃化转变温度(Tg)转移到较低的温度。所获得的结果表明,生物开发的ESR可以作为绿色轮胎和车辆应用的潜在替代品,而不是传统的石油基填料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tire Science and Technology
Tire Science and Technology ENGINEERING, MECHANICAL-
CiteScore
2.10
自引率
0.00%
发文量
11
期刊介绍: Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信