Engineering Properties of Waste Badminton String Fiber

IF 4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fibers Pub Date : 2023-03-03 DOI:10.3390/fib11030025
K. M, S. Nachiar, A. Sekar
{"title":"Engineering Properties of Waste Badminton String Fiber","authors":"K. M, S. Nachiar, A. Sekar","doi":"10.3390/fib11030025","DOIUrl":null,"url":null,"abstract":"This work addresses the feasibility of using waste badminton string fiber in cement and polymer matrices. A badminton racquet, once used, is torn and needs replacement with new strings. These torn strings, once cut from the badminton racquet system, become waste, and these fibers cannot be recycled and remain debris. Hence, this study examines the microstructural and mechanical properties of new fibers and old torn fibers comparatively. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy are used to study the microstructural properties of the fiber. Direct tensile stress is applied to new and old fibers in the universal testing machine varying by one, three, and five strands of the fibers and varying the gauge length to 60, 80, and 100 mm, and the respective energy absorption is calculated. From investigation with a varying number of strands, similar results were observed in both old and new fibers from energy absorption and residual force ratio. From investigation with varying gauge length, the tensile stress of new fibers varies between 648.53 and 749.03 MPa, and that of old fibers is 537.40–625.55 MPa. Young’s modulus for new and old fibers is 4870.00 and 4843.50 MPa, respectively. The Weibull statistical approach is used to test the variability of test results. The Weibull modulus varies between 5.27 and 9.17, which shows lower variability. Thus, the tensile stress results obtained for the discarded badminton fibers pave way for incorporating these fibers in cement and polymer matrices to improve the matrix properties.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11030025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This work addresses the feasibility of using waste badminton string fiber in cement and polymer matrices. A badminton racquet, once used, is torn and needs replacement with new strings. These torn strings, once cut from the badminton racquet system, become waste, and these fibers cannot be recycled and remain debris. Hence, this study examines the microstructural and mechanical properties of new fibers and old torn fibers comparatively. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy are used to study the microstructural properties of the fiber. Direct tensile stress is applied to new and old fibers in the universal testing machine varying by one, three, and five strands of the fibers and varying the gauge length to 60, 80, and 100 mm, and the respective energy absorption is calculated. From investigation with a varying number of strands, similar results were observed in both old and new fibers from energy absorption and residual force ratio. From investigation with varying gauge length, the tensile stress of new fibers varies between 648.53 and 749.03 MPa, and that of old fibers is 537.40–625.55 MPa. Young’s modulus for new and old fibers is 4870.00 and 4843.50 MPa, respectively. The Weibull statistical approach is used to test the variability of test results. The Weibull modulus varies between 5.27 and 9.17, which shows lower variability. Thus, the tensile stress results obtained for the discarded badminton fibers pave way for incorporating these fibers in cement and polymer matrices to improve the matrix properties.
废羽毛球弦纤维的工程特性
本研究探讨了废羽毛球弦纤维在水泥和聚合物基体中应用的可行性。羽毛球拍一旦使用就会被撕破,需要更换新的拍线。这些撕裂的线,一旦从羽毛球拍系统中剪下来,就变成了废物,这些纤维不能回收,仍然是碎片。因此,本研究比较了新纤维和旧撕裂纤维的显微组织和力学性能。利用扫描电子显微镜、x射线衍射、傅里叶变换红外光谱和能量色散光谱研究了纤维的微观结构特性。在万能试验机上,对新老纤维分别施加1股、3股、5股的直接拉伸应力,将测长分别改变为60mm、80mm、100mm,并计算各自的能量吸收。从不同股数的研究中,从能量吸收和残余力比上观察到新旧纤维相似的结果。在不同厚度下,新纤维的拉伸应力在648.53 ~ 749.03 MPa之间,旧纤维的拉伸应力在537.40 ~ 625.55 MPa之间。新老纤维的杨氏模量分别为4870.00和4843.50 MPa。使用威布尔统计方法来检验测试结果的可变性。威布尔模量在5.27 ~ 9.17之间,变异性较低。因此,获得的废弃羽毛球纤维的拉伸应力结果为将这些纤维掺入水泥和聚合物基体中以改善基体性能铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers
Fibers Engineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍: Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信