Neuronal avalanche dynamics regulated by spike-timing-dependent plasticity under different topologies and heterogeneities.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2024-06-01 Epub Date: 2023-04-18 DOI:10.1007/s11571-023-09966-8
Jiayi Yang, Peihua Feng, Ying Wu
{"title":"Neuronal avalanche dynamics regulated by spike-timing-dependent plasticity under different topologies and heterogeneities.","authors":"Jiayi Yang, Peihua Feng, Ying Wu","doi":"10.1007/s11571-023-09966-8","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal avalanches, a critical state of network self-organization, have been widely observed in electrophysiological records at different signal levels and spatial scales of the brain, which has significant influence on information transmission and processing in the brain. In this paper, the collective behavior of neuron firing is studied based on Leaky Integrate-and-Fire model and we induce spike-timing-dependent plasticity (STDP) to update the connection weight through competition between adjacent neurons in different network topologies. The result shows that STDP can facilitate the synchronization of the network and increase the probability of large-scale neuron avalanche obviously. Moreover, both the structure of STDP and network connection density can affect the generation of avalanche critical states, specifically, learning rate has positive correlation effect on the slope of power-law distribution and time constant has negative correction on it. However, when we the increase of heterogeneity in network, STDP can only has obvious promotion in synchrony under suitable level of heterogeneity. And we find that the process of long-term potentiation is sensitive to the adjustment of time constant and learning rate, unlike long-term depression, which is only sensitive to learning rate in heterogeneity network. It is suggested that presented results could facilitate our understanding on synchronization in various neural networks under the effect of STDP learning rules.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143121/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09966-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neuronal avalanches, a critical state of network self-organization, have been widely observed in electrophysiological records at different signal levels and spatial scales of the brain, which has significant influence on information transmission and processing in the brain. In this paper, the collective behavior of neuron firing is studied based on Leaky Integrate-and-Fire model and we induce spike-timing-dependent plasticity (STDP) to update the connection weight through competition between adjacent neurons in different network topologies. The result shows that STDP can facilitate the synchronization of the network and increase the probability of large-scale neuron avalanche obviously. Moreover, both the structure of STDP and network connection density can affect the generation of avalanche critical states, specifically, learning rate has positive correlation effect on the slope of power-law distribution and time constant has negative correction on it. However, when we the increase of heterogeneity in network, STDP can only has obvious promotion in synchrony under suitable level of heterogeneity. And we find that the process of long-term potentiation is sensitive to the adjustment of time constant and learning rate, unlike long-term depression, which is only sensitive to learning rate in heterogeneity network. It is suggested that presented results could facilitate our understanding on synchronization in various neural networks under the effect of STDP learning rules.

在不同拓扑结构和异质性下,神经元雪崩动力学受峰值时间依赖的可塑性调控
神经元雪崩是网络自组织的一种临界状态,在大脑不同信号水平和空间尺度的电生理记录中被广泛观察到,对大脑的信息传输和处理有重要影响。本文基于 Leaky Integrate-and-Fire 模型研究了神经元发射的集体行为,并通过不同网络拓扑结构中相邻神经元之间的竞争,诱导尖峰计时可塑性(STDP)更新连接权重。结果表明,STDP 能促进网络同步,并明显增加大规模神经元雪崩的概率。此外,STDP 的结构和网络连接密度都会影响雪崩临界状态的产生,具体来说,学习率对幂律分布斜率有正相关作用,时间常数对其有负修正作用。然而,当网络中的异质性增加时,STDP 只有在合适的异质性水平下才能对同步性有明显的促进作用。我们还发现,长期电位过程对时间常数和学习率的调整都很敏感,而不像长期抑制那样,在异质性网络中只对学习率敏感。这些结果有助于我们理解 STDP 学习规则作用下各种神经网络的同步性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信