Zhuo Yu , Yifang Zou , Shulan Han , Dandan Sun , Lingzhi Wang , Leilei Yang , Yutong Li , Xuemei Zhang , Jianfeng Guo
{"title":"Lenalidomide promotes melarsoprol-activated cGAS-STING-mediated immunotherapy for hepatocellular carcinoma via attenuating TNF-α activity","authors":"Zhuo Yu , Yifang Zou , Shulan Han , Dandan Sun , Lingzhi Wang , Leilei Yang , Yutong Li , Xuemei Zhang , Jianfeng Guo","doi":"10.1016/j.fmre.2023.05.013","DOIUrl":null,"url":null,"abstract":"<div><div>Current immunotherapy has limited efficacy in hepatocellular carcinoma (HCC) due to the immunosuppressive tumor microenvironment (TME). The activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of the interferon genes (STING) pathway demonstrates great potential to unleash the immunosuppressive TME. The capacity of melarsoprol (MEL; an arsenic-containing drug) on activating the cGAS-STING pathway in HCC cells for antitumor immunotherapy was confirmed for the first time in this study. When MEL (particularly at high doses) activated the cGAS-STING pathway; however, HCC growth was not fully inhibited, mainly due to the hyperactivation of tumor necrosis factor α (TNF-α; a cytokine associated with the cGAS-STING pathway). Accordingly, lenalidomide (LEN; a clinically approved TNF-α inhibitor) was used to alleviate pro-tumorigenic effects of the MEL-activated cGAS-STING pathway while maintaining immunotherapeutic effects. To modulate the cGAS-STING pathway <em>in vivo</em>, a poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticle (NP) was used for co-delivery of MEL and LEN, and the co-loaded NP was coated with aminoethyl anisamide (AEAA, a ligand for Sigma-1 receptor)-modified erythrocyte membrane, forming a co-formulation. In this study, co-formulation was able to modulate the cGAS-STING-mediated efficacy and reverse the immunosuppressive TME in allograft and carcinogen-induced orthotopic HCC mouse models, respectively. Our study reveals an intrinsic hurdle to DNA damaging drug-mediated cGAS-STING monotherapy and provides a promising combination strategy to tackle immunosuppression in HCC.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 3","pages":"Pages 1298-1312"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325823001760","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Current immunotherapy has limited efficacy in hepatocellular carcinoma (HCC) due to the immunosuppressive tumor microenvironment (TME). The activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of the interferon genes (STING) pathway demonstrates great potential to unleash the immunosuppressive TME. The capacity of melarsoprol (MEL; an arsenic-containing drug) on activating the cGAS-STING pathway in HCC cells for antitumor immunotherapy was confirmed for the first time in this study. When MEL (particularly at high doses) activated the cGAS-STING pathway; however, HCC growth was not fully inhibited, mainly due to the hyperactivation of tumor necrosis factor α (TNF-α; a cytokine associated with the cGAS-STING pathway). Accordingly, lenalidomide (LEN; a clinically approved TNF-α inhibitor) was used to alleviate pro-tumorigenic effects of the MEL-activated cGAS-STING pathway while maintaining immunotherapeutic effects. To modulate the cGAS-STING pathway in vivo, a poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticle (NP) was used for co-delivery of MEL and LEN, and the co-loaded NP was coated with aminoethyl anisamide (AEAA, a ligand for Sigma-1 receptor)-modified erythrocyte membrane, forming a co-formulation. In this study, co-formulation was able to modulate the cGAS-STING-mediated efficacy and reverse the immunosuppressive TME in allograft and carcinogen-induced orthotopic HCC mouse models, respectively. Our study reveals an intrinsic hurdle to DNA damaging drug-mediated cGAS-STING monotherapy and provides a promising combination strategy to tackle immunosuppression in HCC.