Zinc molybdate/functionalized carbon nanofiber composites modified electrodes for high-performance amperometric detection of hazardous drug Sulfadiazine
Kumar Gokulkumar , Song-Jeng Huang , Sea-Fue Wang , Ramachandran Balaji , Narendhar Chandrasekar , Michael Taeyoung Hwang
{"title":"Zinc molybdate/functionalized carbon nanofiber composites modified electrodes for high-performance amperometric detection of hazardous drug Sulfadiazine","authors":"Kumar Gokulkumar , Song-Jeng Huang , Sea-Fue Wang , Ramachandran Balaji , Narendhar Chandrasekar , Michael Taeyoung Hwang","doi":"10.1016/j.onano.2023.100131","DOIUrl":null,"url":null,"abstract":"<div><p>Pharmaceuticals are generally designed to be nondegradable or slowly degradable to prevent chemical degradation as it is employed as therapeutics for human or animal. This results in a widespread risk when they enter, accumulate or persist in the environment. Pharmaceutical pollution is emerging as wide-reaching concern due to its ostensible consequences, by dissemination in the environment. This demands for inventing novel analytical routes to monitor and mitigate pharmaceutical pollutants. Therefore, this paper presents synthesis of Zinc molybdate nano particles embedded on functionalized carbon nanofibers to fabricate glassy carbon electrode towards sensitive detection of Sulfadiazine (SDZ). The synergistic effect produced in the composite had enabled it with improved charge transfer kinetics and benefited with more active surface area. The proposed ZnMoO<sub>4</sub>/f-CNF sensor shows significant static characteristics such as wide linear response ranges (0.125 to1575.2 μM), low detection limit (0.0006 μM) and selectivity, and increased stability. Also, its practicability was analyzed by SDZ detection in real samples.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"10 ","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952023000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmaceuticals are generally designed to be nondegradable or slowly degradable to prevent chemical degradation as it is employed as therapeutics for human or animal. This results in a widespread risk when they enter, accumulate or persist in the environment. Pharmaceutical pollution is emerging as wide-reaching concern due to its ostensible consequences, by dissemination in the environment. This demands for inventing novel analytical routes to monitor and mitigate pharmaceutical pollutants. Therefore, this paper presents synthesis of Zinc molybdate nano particles embedded on functionalized carbon nanofibers to fabricate glassy carbon electrode towards sensitive detection of Sulfadiazine (SDZ). The synergistic effect produced in the composite had enabled it with improved charge transfer kinetics and benefited with more active surface area. The proposed ZnMoO4/f-CNF sensor shows significant static characteristics such as wide linear response ranges (0.125 to1575.2 μM), low detection limit (0.0006 μM) and selectivity, and increased stability. Also, its practicability was analyzed by SDZ detection in real samples.
期刊介绍:
OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.