{"title":"Recent advances in magnetoresistance biosensors: a short review","authors":"Clifton Dey, Parsa Yari, Kai Wu","doi":"10.1088/2399-1984/acbcb5","DOIUrl":null,"url":null,"abstract":"Recent years have seen the development of spintronic devices and their applications in biomedical areas. Spintronic devices rely on detecting or manipulating a magnetic field, a field to which biological matter is relatively transparent. The recent use of spintronic devices in biomedical areas has included diagnosing diseases such as cancer and cirrhosis, genotyping DNA, point-of-care devices, and flexible electronics. Up to date, most of the spintronic devices in biomedical applications fall into three mainstream types: anisotropic, giant, and tunneling magnetoresistance devices. Each of these has its advantages and drawbacks, which are explored and discussed in this article. The advent of spintronics gives us a new low-power, low-cost, ease-of-manufacture alternative to standard CMOS sensors. The sensitivity of spintronic biosensors has been progressing steadily, expected to increase tremendously in the next few years.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/acbcb5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Recent years have seen the development of spintronic devices and their applications in biomedical areas. Spintronic devices rely on detecting or manipulating a magnetic field, a field to which biological matter is relatively transparent. The recent use of spintronic devices in biomedical areas has included diagnosing diseases such as cancer and cirrhosis, genotyping DNA, point-of-care devices, and flexible electronics. Up to date, most of the spintronic devices in biomedical applications fall into three mainstream types: anisotropic, giant, and tunneling magnetoresistance devices. Each of these has its advantages and drawbacks, which are explored and discussed in this article. The advent of spintronics gives us a new low-power, low-cost, ease-of-manufacture alternative to standard CMOS sensors. The sensitivity of spintronic biosensors has been progressing steadily, expected to increase tremendously in the next few years.
期刊介绍:
Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.