Categorical measures for finite group actions

IF 0.9 1区 数学 Q2 MATHEMATICS
Daniel Bergh, S. Gorchinskiy, M. Larsen, V. Lunts
{"title":"Categorical measures for finite group actions","authors":"Daniel Bergh, S. Gorchinskiy, M. Larsen, V. Lunts","doi":"10.1090/JAG/768","DOIUrl":null,"url":null,"abstract":"Given a variety with a finite group action, we compare its equivariant categorical measure, that is, the categorical measure of the corresponding quotient stack, and the categorical measure of the extended quotient. Using weak factorization for orbifolds, we show that for a wide range of cases that these two measures coincide. This implies, in particular, a conjecture of Galkin and Shinder on categorical and motivic zeta-functions of varieties. We provide examples showing that, in general, these two measures are not equal. We also give an example related to a conjecture of Polishchuk and Van den Bergh, showing that a certain condition in this conjecture is indeed necessary.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2017-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/768","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Given a variety with a finite group action, we compare its equivariant categorical measure, that is, the categorical measure of the corresponding quotient stack, and the categorical measure of the extended quotient. Using weak factorization for orbifolds, we show that for a wide range of cases that these two measures coincide. This implies, in particular, a conjecture of Galkin and Shinder on categorical and motivic zeta-functions of varieties. We provide examples showing that, in general, these two measures are not equal. We also give an example related to a conjecture of Polishchuk and Van den Bergh, showing that a certain condition in this conjecture is indeed necessary.
有限群作用的范畴测度
给定一个有限群作用的变量,比较了它的等变范畴测度,即相应商栈的范畴测度与扩展商的范畴测度。利用轨道的弱分解,我们证明了在很多情况下这两个度量是一致的。这特别暗示了Galkin和Shinder关于种类的范畴和动机的ζ函数的猜想。我们提供的例子表明,在一般情况下,这两个措施是不相等的。我们还举了一个与Polishchuk和Van den Bergh的一个猜想有关的例子,证明了这个猜想中的某个条件确实是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信