Structural evolution of Pt-based oxygen reduction reaction electrocatalysts

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Jiaheng Peng , Peng Tao , Chengyi Song , Wen Shang , Tao Deng , Jianbo Wu
{"title":"Structural evolution of Pt-based oxygen reduction reaction electrocatalysts","authors":"Jiaheng Peng ,&nbsp;Peng Tao ,&nbsp;Chengyi Song ,&nbsp;Wen Shang ,&nbsp;Tao Deng ,&nbsp;Jianbo Wu","doi":"10.1016/S1872-2067(21)63896-2","DOIUrl":null,"url":null,"abstract":"<div><h3>ABSTRACT</h3><p>The commercialization of proton exchange membrane fuel cells (PEMFCs) could provide a cleaner energy society in the near future. However, the sluggish reaction kinetics and harsh conditions of the oxygen reduction reaction affect the durability and cost of PEMFCs. Most previous reports on Pt-based electrocatalyst designs have focused more on improving their activity; however, with the commercialization of PEMFCs, durability has received increasing attention. In-depth insight into the structural evolution of Pt-based electrocatalysts throughout their lifecycle can contribute to further optimization of their activity and durability. The development of <em>in situ</em> electron microscopy and other <em>in situ</em> techniques has promoted the elucidation of the evolution mechanism. This mini review highlights recent advances in the structural evolution of Pt-based electrocatalysts. The mechanisms are adequately discussed, and some methods to inhibit or exploit the structural evolution of the catalysts are also briefly reviewed.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206721638962","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 8

Abstract

ABSTRACT

The commercialization of proton exchange membrane fuel cells (PEMFCs) could provide a cleaner energy society in the near future. However, the sluggish reaction kinetics and harsh conditions of the oxygen reduction reaction affect the durability and cost of PEMFCs. Most previous reports on Pt-based electrocatalyst designs have focused more on improving their activity; however, with the commercialization of PEMFCs, durability has received increasing attention. In-depth insight into the structural evolution of Pt-based electrocatalysts throughout their lifecycle can contribute to further optimization of their activity and durability. The development of in situ electron microscopy and other in situ techniques has promoted the elucidation of the evolution mechanism. This mini review highlights recent advances in the structural evolution of Pt-based electrocatalysts. The mechanisms are adequately discussed, and some methods to inhibit or exploit the structural evolution of the catalysts are also briefly reviewed.

pt基氧还原反应电催化剂的结构演变
摘要质子交换膜燃料电池(PEMFCs)的商业化可以在不久的将来提供一个更清洁的能源社会。然而,缓慢的反应动力学和恶劣的氧还原反应条件影响了pemfc的耐久性和成本。以前关于pt基电催化剂设计的大多数报告更多地关注于提高其活性;然而,随着pemfc的商业化,耐久性受到越来越多的关注。深入了解pt基电催化剂在整个生命周期中的结构演变,有助于进一步优化其活性和耐久性。原位电子显微镜和其他原位技术的发展促进了对进化机制的阐明。本文综述了近年来pt基电催化剂结构演变的最新进展。对其机理进行了充分的讨论,并简要介绍了抑制或利用催化剂结构演变的一些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信