Mrinal Goswami, Atanu Santra, Sukabya Dan, R. Ghatak, A. Bose
{"title":"Ionospheric correction of S-band tracking radar data using NavIC S-band signals in missile test range applications","authors":"Mrinal Goswami, Atanu Santra, Sukabya Dan, R. Ghatak, A. Bose","doi":"10.1017/S0373463323000073","DOIUrl":null,"url":null,"abstract":"Abstract In missile test ranges, complex missions demand precise trajectory generated by radar. Both the radar and Global Navigation Satellite System (GNSS) signals are affected by atmospheric effects, degrading their accuracy and performance. The Indian Regional Navigation Satellite System/Navigation with Indian Constellation (IRNSS/NavIC) transmits signals in the S-band together with the L-band. This paper presents a novel experimental technique to improve the tracking accuracy of S-band radars using the concurrent NavIC S-band signal. The ionospheric delay using the NavIC S-band signal is calculated first, and the results are used to improve the trajectory data of simultaneously operating S-band radars. This is a unique application of the NavIC S-band signals apart from its conventional usage. During a launch mission, for low elevation angles, the ionospheric error is found to be ~130 m while at higher elevation angles the error values are found to be ~1–3 m. The concept is validated using data from a missile test mission. This report on the use of S-band GNSS signals for the correction of S-band radar range data offers a clear advantage of simplicity and accuracy.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"76 1","pages":"225 - 237"},"PeriodicalIF":1.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463323000073","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In missile test ranges, complex missions demand precise trajectory generated by radar. Both the radar and Global Navigation Satellite System (GNSS) signals are affected by atmospheric effects, degrading their accuracy and performance. The Indian Regional Navigation Satellite System/Navigation with Indian Constellation (IRNSS/NavIC) transmits signals in the S-band together with the L-band. This paper presents a novel experimental technique to improve the tracking accuracy of S-band radars using the concurrent NavIC S-band signal. The ionospheric delay using the NavIC S-band signal is calculated first, and the results are used to improve the trajectory data of simultaneously operating S-band radars. This is a unique application of the NavIC S-band signals apart from its conventional usage. During a launch mission, for low elevation angles, the ionospheric error is found to be ~130 m while at higher elevation angles the error values are found to be ~1–3 m. The concept is validated using data from a missile test mission. This report on the use of S-band GNSS signals for the correction of S-band radar range data offers a clear advantage of simplicity and accuracy.
期刊介绍:
The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.