{"title":"Turbulent Drag Reduction by Streamwise Traveling Waves of Wall-Normal Forcing","authors":"K. Fukagata, K. Iwamoto, Y. Hasegawa","doi":"10.1146/annurev-fluid-120720-021445","DOIUrl":null,"url":null,"abstract":"We review some fundamentals of turbulent drag reduction and the turbulent drag reduction techniques using streamwise traveling waves of blowing/suction from the wall and wall deformation. For both types of streamwise traveling wave controls, their significant drag reduction capabilities have been well confirmed by direct numerical simulation at relatively low Reynolds numbers. The drag reduction mechanisms by these streamwise traveling waves are considered to be the combination of direct effects due to pumping and indirect effects of the attenuation of velocity fluctuations due to reduced receptivity. Prediction of their drag reduction capabilities at higher Reynolds numbers and attempts for experimental validation are also intensively ongoing toward their practical implementation. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 56 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-120720-021445","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
We review some fundamentals of turbulent drag reduction and the turbulent drag reduction techniques using streamwise traveling waves of blowing/suction from the wall and wall deformation. For both types of streamwise traveling wave controls, their significant drag reduction capabilities have been well confirmed by direct numerical simulation at relatively low Reynolds numbers. The drag reduction mechanisms by these streamwise traveling waves are considered to be the combination of direct effects due to pumping and indirect effects of the attenuation of velocity fluctuations due to reduced receptivity. Prediction of their drag reduction capabilities at higher Reynolds numbers and attempts for experimental validation are also intensively ongoing toward their practical implementation. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 56 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.