IGUSA’S CONJECTURE FOR EXPONENTIAL SUMS: OPTIMAL ESTIMATES FOR NONRATIONAL SINGULARITIES

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
R. Cluckers, M. Mustaţă, K. Nguyen
{"title":"IGUSA’S CONJECTURE FOR EXPONENTIAL SUMS: OPTIMAL ESTIMATES FOR NONRATIONAL SINGULARITIES","authors":"R. Cluckers, M. Mustaţă, K. Nguyen","doi":"10.1017/fmp.2019.3","DOIUrl":null,"url":null,"abstract":"We prove an upper bound on the log canonical threshold of a hypersurface that satisfies a certain power condition and use it to prove several generalizations of Igusa’s conjecture on exponential sums, with the log canonical threshold in the exponent of the estimates. We show that this covers optimally all situations of the conjectures for nonrational singularities by comparing the log canonical threshold with a local notion of the motivic oscillation index.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2018-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/fmp.2019.3","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2019.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 15

Abstract

We prove an upper bound on the log canonical threshold of a hypersurface that satisfies a certain power condition and use it to prove several generalizations of Igusa’s conjecture on exponential sums, with the log canonical threshold in the exponent of the estimates. We show that this covers optimally all situations of the conjectures for nonrational singularities by comparing the log canonical threshold with a local notion of the motivic oscillation index.
指数和的IGUSA猜想:非有理奇点的最优估计
我们证明了满足幂条件的超曲面的对数正则阈值的一个上界,并用它证明了Igusa猜想在指数和上的几个推广,其中对数正则阈值在估计的指数中。通过将对数正则阈值与动力振荡指数的局部概念进行比较,我们证明了这最优地涵盖了非有理奇点猜想的所有情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信