Comparative Investigations on the Bioactivity of Surface Grain Refined Titanium and Surface Oxidized Titanium for Biomedical Implant Applications

Q3 Biochemistry, Genetics and Molecular Biology
{"title":"Comparative Investigations on the Bioactivity of Surface Grain Refined Titanium and Surface Oxidized Titanium for Biomedical Implant Applications","authors":"","doi":"10.33263/briac134.318","DOIUrl":null,"url":null,"abstract":"Surface engineering of titanium (Ti) for medical implant applications is an active research area in the biomedical field across the globe. Improving the bioactivity of the Ti surface is crucial for implant applications where osseointegration is essentially required to enhance the healing rate. In the present work, shot peening followed by micro-arc oxidation (MAO) treatments were applied to pure Ti with an objective to investigate the role of surface grain refinement and the oxide layer on biomineralization ability to assess the bioactivity of the surface. After shot peening with steel balls, Ti substrates were subjected to MAO using sodium phosphate solution. Grain refinement was observed at the surface after the shot peening at a submicrometer levels ranging from 0.5 to 2 µm for a thickness of ~ 50µm. Ti sheets subjected to MAO exhibited a porous oxide layer on the surface. From the XRD analysis, the TiO2 layer was observed as a combination of anatase and rutile. Higher Ca/P-based apatite deposition on shot-peened Ti compared with MAO Ti was observed in the in vitro immersion studies. The results indicated increased bioactivity for grain refined Ti compared with MAO Ti. Hence, it is concluded that the microstructure influences the bioactivity of Ti implants compared with the oxide layer.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Surface engineering of titanium (Ti) for medical implant applications is an active research area in the biomedical field across the globe. Improving the bioactivity of the Ti surface is crucial for implant applications where osseointegration is essentially required to enhance the healing rate. In the present work, shot peening followed by micro-arc oxidation (MAO) treatments were applied to pure Ti with an objective to investigate the role of surface grain refinement and the oxide layer on biomineralization ability to assess the bioactivity of the surface. After shot peening with steel balls, Ti substrates were subjected to MAO using sodium phosphate solution. Grain refinement was observed at the surface after the shot peening at a submicrometer levels ranging from 0.5 to 2 µm for a thickness of ~ 50µm. Ti sheets subjected to MAO exhibited a porous oxide layer on the surface. From the XRD analysis, the TiO2 layer was observed as a combination of anatase and rutile. Higher Ca/P-based apatite deposition on shot-peened Ti compared with MAO Ti was observed in the in vitro immersion studies. The results indicated increased bioactivity for grain refined Ti compared with MAO Ti. Hence, it is concluded that the microstructure influences the bioactivity of Ti implants compared with the oxide layer.
表面晶粒细化钛与表面氧化钛在生物医学植入物中的生物活性比较研究
钛(Ti)表面工程在医疗植入物中的应用是全球生物医学领域的一个活跃研究领域。提高钛表面的生物活性对于种植体应用至关重要,因为种植体需要骨整合来提高愈合速度。喷丸强化后,表面晶粒细化,亚微米级范围为0.5 ~ 2µm,厚度为~ 50µm。XRD分析表明,TiO2为锐钛矿和金红石的结合体。因此,与氧化层相比,微观结构影响钛植入物的生物活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
256
期刊介绍: Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信