Maximizing Riesz means of anisotropic harmonic oscillators

IF 0.8 4区 数学 Q2 MATHEMATICS
S. Larson
{"title":"Maximizing Riesz means of anisotropic harmonic oscillators","authors":"S. Larson","doi":"10.4310/ARKIV.2019.V57.N1.A8","DOIUrl":null,"url":null,"abstract":"We consider problems related to the asymptotic minimization of eigenvalues of anisotropic harmonic oscillators in the plane. In particular we study Riesz means of the eigenvalues and the trace of the corresponding heat kernels. The eigenvalue minimization problem can be reformulated as a lattice point problem where one wishes to maximize the number of points of $(\\mathbb{N}-\\tfrac12)\\times(\\mathbb{N}-\\tfrac12)$ inside triangles with vertices $(0, 0), (0, \\lambda \\sqrt{\\beta})$ and $(\\lambda/{\\sqrt{\\beta}}, 0)$ with respect to $\\beta>0$, for fixed $\\lambda\\geq 0$. This lattice point formulation of the problem naturally leads to a family of generalized problems where one instead considers the shifted lattice $(\\mathbb{N}+\\sigma)\\times(\\mathbb{N}+\\tau)$, for $\\sigma, \\tau >-1$. We show that the nature of these problems are rather different depending on the shift parameters, and in particular that the problem corresponding to harmonic oscillators, $\\sigma=\\tau=-\\tfrac12$, is a critical case.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2017-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2019.V57.N1.A8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We consider problems related to the asymptotic minimization of eigenvalues of anisotropic harmonic oscillators in the plane. In particular we study Riesz means of the eigenvalues and the trace of the corresponding heat kernels. The eigenvalue minimization problem can be reformulated as a lattice point problem where one wishes to maximize the number of points of $(\mathbb{N}-\tfrac12)\times(\mathbb{N}-\tfrac12)$ inside triangles with vertices $(0, 0), (0, \lambda \sqrt{\beta})$ and $(\lambda/{\sqrt{\beta}}, 0)$ with respect to $\beta>0$, for fixed $\lambda\geq 0$. This lattice point formulation of the problem naturally leads to a family of generalized problems where one instead considers the shifted lattice $(\mathbb{N}+\sigma)\times(\mathbb{N}+\tau)$, for $\sigma, \tau >-1$. We show that the nature of these problems are rather different depending on the shift parameters, and in particular that the problem corresponding to harmonic oscillators, $\sigma=\tau=-\tfrac12$, is a critical case.
各向异性谐振子的Riesz均值最大化
研究平面上各向异性谐振子特征值的渐近极小化问题。我们特别研究了特征值的Riesz均值和相应热核的迹线。特征值最小化问题可以被重新表述为一个点阵问题,在这个点阵问题中,对于固定的$\lambda\geq 0$,人们希望最大化具有顶点$(0, 0), (0, \lambda \sqrt{\beta})$和$(\lambda/{\sqrt{\beta}}, 0)$的$(\mathbb{N}-\tfrac12)\times(\mathbb{N}-\tfrac12)$内部三角形相对于$\beta>0$的点的数量。这个问题的晶格点公式自然会引出一系列的广义问题,人们转而考虑位移晶格$(\mathbb{N}+\sigma)\times(\mathbb{N}+\tau)$,对于$\sigma, \tau >-1$。我们表明,这些问题的性质是相当不同的取决于移位参数,特别是问题对应于谐波振荡器,$\sigma=\tau=-\tfrac12$,是一个临界情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信