Material, Device and Circuit-Compatible Modeling of Ferroelectric Devices

IF 2.3 Q3 NANOSCIENCE & NANOTECHNOLOGY
Revanth Koduru, Tanmoy Kumar Paul, S. Gupta
{"title":"Material, Device and Circuit-Compatible Modeling of Ferroelectric Devices","authors":"Revanth Koduru, Tanmoy Kumar Paul, S. Gupta","doi":"10.1109/MNANO.2023.3278970","DOIUrl":null,"url":null,"abstract":"Ferroelectric devices have gained significant interest, owing to their diverse range of applications in fields such as non-volatile memories, steep-slope transistors, neuromorphic and in-memory computing. Accurate modeling of ferroelectric devices is crucial to optimize these devices for different applications and design high-performance circuits. This article presents an overview of the current state of ferroelectric modeling at material, device, and circuit levels. We examine the unique aspects and limitations of the current modeling techniques and highlight potential areas of further research to advance this field.","PeriodicalId":44724,"journal":{"name":"IEEE Nanotechnology Magazine","volume":"17 1","pages":"26-36"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nanotechnology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNANO.2023.3278970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectric devices have gained significant interest, owing to their diverse range of applications in fields such as non-volatile memories, steep-slope transistors, neuromorphic and in-memory computing. Accurate modeling of ferroelectric devices is crucial to optimize these devices for different applications and design high-performance circuits. This article presents an overview of the current state of ferroelectric modeling at material, device, and circuit levels. We examine the unique aspects and limitations of the current modeling techniques and highlight potential areas of further research to advance this field.
铁电器件的材料、器件和电路兼容建模
铁电器件因其在非易失性存储器、陡坡晶体管、神经形态和内存计算等领域的广泛应用而引起了人们的极大兴趣。铁电器件的精确建模对于针对不同应用优化这些器件和设计高性能电路至关重要。本文概述了铁电建模在材料、器件和电路层面的现状。我们研究了当前建模技术的独特方面和局限性,并强调了推进该领域的潜在研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Nanotechnology Magazine
IEEE Nanotechnology Magazine NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.90
自引率
6.20%
发文量
46
期刊介绍: IEEE Nanotechnology Magazine publishes peer-reviewed articles that present emerging trends and practices in industrial electronics product research and development, key insights, and tutorial surveys in the field of interest to the member societies of the IEEE Nanotechnology Council. IEEE Nanotechnology Magazine will be limited to the scope of the Nanotechnology Council, which supports the theory, design, and development of nanotechnology and its scientific, engineering, and industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信