Geometric aspects on Humbert-Edge curves of type 5, Kummer surfaces and hyperelliptic curves of genus 2

Pub Date : 2023-07-25 DOI:10.1017/S0017089523000174
Abel Castorena, Juan Bosco Fr'ias-Medina
{"title":"Geometric aspects on Humbert-Edge curves of type 5, Kummer surfaces and hyperelliptic curves of genus 2","authors":"Abel Castorena, Juan Bosco Fr'ias-Medina","doi":"10.1017/S0017089523000174","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we study the Humbert-Edge curves of type 5, defined as a complete intersection of four diagonal quadrics in \n${\\mathbb{P}}^5$\n . We characterize them using Kummer surfaces, and using the geometry of these surfaces, we construct some vanishing thetanulls on such curves. In addition, we describe an argument to give an isomorphism between the moduli space of Humbert-Edge curves of type 5 and the moduli space of hyperelliptic curves of genus 2, and we show how this argument can be generalized to state an isomorphism between the moduli space of hyperelliptic curves of genus \n$g=\\frac{n-1}{2}$\n and the moduli space of Humbert-Edge curves of type \n$n\\geq 5$\n where \n$n$\n is an odd number.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089523000174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this work, we study the Humbert-Edge curves of type 5, defined as a complete intersection of four diagonal quadrics in ${\mathbb{P}}^5$ . We characterize them using Kummer surfaces, and using the geometry of these surfaces, we construct some vanishing thetanulls on such curves. In addition, we describe an argument to give an isomorphism between the moduli space of Humbert-Edge curves of type 5 and the moduli space of hyperelliptic curves of genus 2, and we show how this argument can be generalized to state an isomorphism between the moduli space of hyperelliptic curves of genus $g=\frac{n-1}{2}$ and the moduli space of Humbert-Edge curves of type $n\geq 5$ where $n$ is an odd number.
分享
查看原文
5型Humbert-Edge曲线、Kummer曲面和2属超椭圆曲线的几何方面
摘要在这项工作中,我们研究了类型5的Humbert Edge曲线,该曲线被定义为${\mathbb{P}}^5$中四个对角二次曲面的完全交集。我们使用Kummer曲面来刻画它们,并使用这些曲面的几何结构,在这些曲线上构造一些消失的圆环。此外,我们还描述了一个论点,给出了类型5的Humbert Edge曲线的模空间与亏格2的超椭圆曲线的模空之间的同构,并且我们展示了如何将这个论点推广到表示亏格$g=\frac{n-1}{2}$的超椭圆曲线的模空间与类型$n\geq5$的Humbert-Edge曲线的模空之间的同构,其中$n$是奇数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信