Signaling pathways implicated in enhanced stem/progenitor cell differentiation on electroactive scaffolds

Q1 Engineering
Boon Chin Heng , Yunyang Bai , Xiaochan Li , Yanze Meng , Xuehui Zhang , Xuliang Deng
{"title":"Signaling pathways implicated in enhanced stem/progenitor cell differentiation on electroactive scaffolds","authors":"Boon Chin Heng ,&nbsp;Yunyang Bai ,&nbsp;Xiaochan Li ,&nbsp;Yanze Meng ,&nbsp;Xuehui Zhang ,&nbsp;Xuliang Deng","doi":"10.1016/j.smaim.2021.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Cells are naturally surrounded by an electroactive extracellular matrix <em>in vivo</em>, which is composed of a diverse array of charged molecules such as glycosaminoglycans and proteoglycans, together with piezoelectric collagen fibers capable of generating electrical signals in response to mechanical stimuli. In recent years, electroactive scaffold materials have attracted much attention in tissue engineering and regenerative medicine applications, as a biomimetic strategy to recapitulate the natural physiological electrical microenvironment <em>in vivo</em>, which could enhance the differentiation of stem/progenitor cells into specific lineages, thus facilitating tissue repair and regeneration. The key to improving the functional design of electroactive scaffold biomaterials would be to understand the various intracellular signaling pathways that are activated by electrical stimuli. Therefore, this review critically examines the effects of electrical stimuli and/or scaffolds with electroactive properties on directing stem/progenitor cells towards the osteogenic, neurogenic and other lineages, with particular focus on the molecular signaling pathways involved.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183421000302/pdfft?md5=0939890f42d97fd1c54efdaa96c996d8&pid=1-s2.0-S2590183421000302-main.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183421000302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 8

Abstract

Cells are naturally surrounded by an electroactive extracellular matrix in vivo, which is composed of a diverse array of charged molecules such as glycosaminoglycans and proteoglycans, together with piezoelectric collagen fibers capable of generating electrical signals in response to mechanical stimuli. In recent years, electroactive scaffold materials have attracted much attention in tissue engineering and regenerative medicine applications, as a biomimetic strategy to recapitulate the natural physiological electrical microenvironment in vivo, which could enhance the differentiation of stem/progenitor cells into specific lineages, thus facilitating tissue repair and regeneration. The key to improving the functional design of electroactive scaffold biomaterials would be to understand the various intracellular signaling pathways that are activated by electrical stimuli. Therefore, this review critically examines the effects of electrical stimuli and/or scaffolds with electroactive properties on directing stem/progenitor cells towards the osteogenic, neurogenic and other lineages, with particular focus on the molecular signaling pathways involved.

电活性支架上干细胞/祖细胞分化增强的信号通路
细胞在体内自然被电活性细胞外基质包围,该基质由多种带电分子组成,如糖胺聚糖和蛋白聚糖,以及能够响应机械刺激产生电信号的压电胶原纤维。近年来,电活性支架材料作为一种再现体内自然生理电微环境的仿生策略,能够促进干细胞/祖细胞向特定谱系分化,从而促进组织修复和再生,在组织工程和再生医学应用中备受关注。改善电活性支架生物材料功能设计的关键是了解由电刺激激活的各种细胞内信号通路。因此,本文将重点研究电刺激和/或具有电活性的支架对引导干细胞/祖细胞向成骨、神经和其他谱系的影响,并特别关注所涉及的分子信号通路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信