{"title":"Small-signal modelling and analysis of microgrids with synchronous and virtual synchronous generators","authors":"Rui Liu, Li Ding, Cheng Xue, Yunwei (Ryan) Li","doi":"10.1049/esi2.12099","DOIUrl":null,"url":null,"abstract":"<p>In autonomous alternating current microgrids, the grid-forming virtual synchronous generators can cooperate with the conventional synchronous generators to improve system inertia and frequency regulation capability. However, undesired active power oscillations between the synchronous generators and grid-forming virtual synchronous generators may trigger their overcurrent protection and even result in a blackout. To explicitly reveal the oscillatory modes over all frequency bands, a high-fidelity full-order state-space model is first developed. A potentially destabilising sub-synchronous oscillation mode resulting from the interaction between grid-forming virtual synchronous generators voltage controller and synchronous generators <i>q</i>-axis damper winding is identified. Other modes reflecting the low-frequency oscillation and frequency restoration dynamics are also assessed. Subsequently, to make a reasonable trade-off between the accuracy and simplicity of system modelling, an enhanced quasi-stationary model dedicated to low-frequency oscillation evaluation is simplified from the full-order type. The enhanced quasi-stationary model features simplicity and low-order benefits, which makes it more practical for multi-generator system analysis. Moreover, by considering the dynamics of synchronous generators field winding and excitation system, the enhanced quasi-stationary model significantly improves the low-frequency oscillation characterisation accuracy compared with the existing quasi-stationary model. The two developed models are comprehensively compared with the existing small-signal models. Real-time simulations based on RT-LAB are conducted to verify the correctness of the theoretical analysis and the accuracy of the proposed small-signal models.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 1","pages":"45-61"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12099","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In autonomous alternating current microgrids, the grid-forming virtual synchronous generators can cooperate with the conventional synchronous generators to improve system inertia and frequency regulation capability. However, undesired active power oscillations between the synchronous generators and grid-forming virtual synchronous generators may trigger their overcurrent protection and even result in a blackout. To explicitly reveal the oscillatory modes over all frequency bands, a high-fidelity full-order state-space model is first developed. A potentially destabilising sub-synchronous oscillation mode resulting from the interaction between grid-forming virtual synchronous generators voltage controller and synchronous generators q-axis damper winding is identified. Other modes reflecting the low-frequency oscillation and frequency restoration dynamics are also assessed. Subsequently, to make a reasonable trade-off between the accuracy and simplicity of system modelling, an enhanced quasi-stationary model dedicated to low-frequency oscillation evaluation is simplified from the full-order type. The enhanced quasi-stationary model features simplicity and low-order benefits, which makes it more practical for multi-generator system analysis. Moreover, by considering the dynamics of synchronous generators field winding and excitation system, the enhanced quasi-stationary model significantly improves the low-frequency oscillation characterisation accuracy compared with the existing quasi-stationary model. The two developed models are comprehensively compared with the existing small-signal models. Real-time simulations based on RT-LAB are conducted to verify the correctness of the theoretical analysis and the accuracy of the proposed small-signal models.