{"title":"Multilevel bootstrap particle filter","authors":"K. Heine, D. Burrows","doi":"10.3150/22-bej1468","DOIUrl":null,"url":null,"abstract":"We consider situations where the applicability of sequential Monte Carlo particle filters is compromised due to the expensive evaluation of the particle weights. To alleviate this problem, we propose a new particle filter algorithm based on the multilevel approach. We show that the resulting multilevel bootstrap particle filter (MLBPF) retains the strong law of large numbers as well as the central limit theorem of classical particle filters under mild conditions. Our numerical experiments demonstrate up to 85\\% reduction in computation time compared to the classical bootstrap particle filter, in certain settings. While it should be acknowledged that this reduction is highly application dependent, and a similar gain should not be expected for all applications across the board, we believe that this substantial improvement in certain settings makes MLBPF an important addition to the family of sequential Monte Carlo methods.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1468","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider situations where the applicability of sequential Monte Carlo particle filters is compromised due to the expensive evaluation of the particle weights. To alleviate this problem, we propose a new particle filter algorithm based on the multilevel approach. We show that the resulting multilevel bootstrap particle filter (MLBPF) retains the strong law of large numbers as well as the central limit theorem of classical particle filters under mild conditions. Our numerical experiments demonstrate up to 85\% reduction in computation time compared to the classical bootstrap particle filter, in certain settings. While it should be acknowledged that this reduction is highly application dependent, and a similar gain should not be expected for all applications across the board, we believe that this substantial improvement in certain settings makes MLBPF an important addition to the family of sequential Monte Carlo methods.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.