Weighted w-core inverses in rings

IF 0.4 4区 数学 Q4 MATHEMATICS
Liyun Wu, Huihui Zhu
{"title":"Weighted w-core inverses in rings","authors":"Liyun Wu, Huihui Zhu","doi":"10.21136/CMJ.2022.0134-22","DOIUrl":null,"url":null,"abstract":"Let R be a unital *-ring. For any a, s, t, v, w ∈ R we define the weighted w-core inverse and the weighted dual s-core inverse, extending the w-core inverse and the dual s-core inverse, respectively. An element a ∈ R has a weighted w-core inverse with the weight v if there exists some x ∈ R such that awxvx = x, xvawa = a and (awx)* = awx. Dually, an element a ∈ R has a weighted dual s-core inverse with the weight t if there exists some y ∈ R such that ytysa = y, asaty = a and (ysa)* = ysa. Several characterizations of weighted w-core invertible and weighted dual s-core invertible elements are given when weights v and t are invertible Hermitian elements. Also, the relations among the weighted w-core inverse, the weighted dual s-core inverse, the e-core inverse, the dual f-core inverse, the weighted Moore-Penrose inverse and the (v, w)-(b, c)-inverse are considered.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"581 - 602"},"PeriodicalIF":0.4000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2022.0134-22","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a unital *-ring. For any a, s, t, v, w ∈ R we define the weighted w-core inverse and the weighted dual s-core inverse, extending the w-core inverse and the dual s-core inverse, respectively. An element a ∈ R has a weighted w-core inverse with the weight v if there exists some x ∈ R such that awxvx = x, xvawa = a and (awx)* = awx. Dually, an element a ∈ R has a weighted dual s-core inverse with the weight t if there exists some y ∈ R such that ytysa = y, asaty = a and (ysa)* = ysa. Several characterizations of weighted w-core invertible and weighted dual s-core invertible elements are given when weights v and t are invertible Hermitian elements. Also, the relations among the weighted w-core inverse, the weighted dual s-core inverse, the e-core inverse, the dual f-core inverse, the weighted Moore-Penrose inverse and the (v, w)-(b, c)-inverse are considered.
环中的加权w核逆
设R是一个单位环。对于任意a, s, t, v, w∈R,我们定义了加权w核逆和加权双s核逆,分别对w核逆和双s核逆进行了推广。如果存在某个x∈R使得awxvx = x, xvawa = a和(awx)* = awx,则元素a∈R与权值v有一个加权w核逆。对偶地,如果存在某个y∈R使得ytysa = y, asaty = a和(ysa)* = ysa,则元素a∈R具有权为t的加权对偶s核逆。给出了权重v和t为可逆厄米元时加权w核可逆元和加权对偶s核可逆元的几个性质。同时考虑了加权w核逆、加权双s核逆、e核逆、双f核逆、加权Moore-Penrose逆和(v, w)-(b, c)-逆之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信