An iterative method for variational inclusions and fixed points of total uniformly $L$-Lipschitzian mappings

IF 1.4 4区 数学 Q1 MATHEMATICS
Q. Ansari, J. Balooee, S. Al-Homidan
{"title":"An iterative method for variational inclusions and fixed points of total uniformly $L$-Lipschitzian mappings","authors":"Q. Ansari, J. Balooee, S. Al-Homidan","doi":"10.37193/cjm.2023.01.24","DOIUrl":null,"url":null,"abstract":"\"The characterizations of $m$-relaxed monotone and maximal $m$-relaxed monotone operators are presented and by defining the resolvent operator associated with a maximal $m$-relaxed monotone operator, its Lipschitz continuity is proved and an estimate of its Lipschitz constant is computed. By using resolvent operator associated with a maximal $m$-relaxed monotone operator, an iterative algorithm is constructed for approximating a common element of the set of fixed points of a total uniformly $L$-Lipschitzian mapping and the set of solutions of a variational inclusion problem involving maximal $m$-relaxed monotone operators. By employing the concept of graph convergence for maximal $m$-relaxed monotone operators, a new equivalence relationship between the graph convergence of a sequence of maximal $m$-relaxed monotone operators and their associated resolvent operators, respectively, to a given maximal $m$-relaxed monotone operator and its associated resolvent operator is established. At the end, we study the strong convergence of the sequence generated by the proposed iterative algorithm to a common element of the above mentioned sets.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.01.24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

"The characterizations of $m$-relaxed monotone and maximal $m$-relaxed monotone operators are presented and by defining the resolvent operator associated with a maximal $m$-relaxed monotone operator, its Lipschitz continuity is proved and an estimate of its Lipschitz constant is computed. By using resolvent operator associated with a maximal $m$-relaxed monotone operator, an iterative algorithm is constructed for approximating a common element of the set of fixed points of a total uniformly $L$-Lipschitzian mapping and the set of solutions of a variational inclusion problem involving maximal $m$-relaxed monotone operators. By employing the concept of graph convergence for maximal $m$-relaxed monotone operators, a new equivalence relationship between the graph convergence of a sequence of maximal $m$-relaxed monotone operators and their associated resolvent operators, respectively, to a given maximal $m$-relaxed monotone operator and its associated resolvent operator is established. At the end, we study the strong convergence of the sequence generated by the proposed iterative algorithm to a common element of the above mentioned sets."
全一致$L$-Lipschitzian映射的变分包含和不动点的迭代方法
摘要给出了$m$松弛单调算子和极大$m$放松单调算子的特征,通过定义与极大$m$$松弛单调运算符相关的预解算子,证明了其Lipschitz连续性,并计算了其Lips chitz常数的估计s构造用于逼近全一致$L$-Lipschitzian映射的不动点集的公共元素和涉及最大$m$-松弛单调算子的变分包含问题的解集。利用极大$m$-松弛单调算子的图收敛性概念,建立了极大$m$松弛单调算子及其相关预解算子序列的图收敛分别与给定的极大$m$1-放松单调算子及其关联预解算子的等价关系。最后,我们研究了所提出的迭代算法生成的序列对上述集合的一个公共元素的强收敛性。“
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信