Deligne Categories and the Periplectic Lie Superalgebra

I. Entova-Aizenbud, V. Serganova
{"title":"Deligne Categories and the Periplectic Lie Superalgebra","authors":"I. Entova-Aizenbud, V. Serganova","doi":"10.17323/1609-4514-2021-21-3-507-565","DOIUrl":null,"url":null,"abstract":"We study stabilization of finite-dimensional representations of the periplectic Lie superalgebras $\\mathfrak{p}(n)$ as $n \\to \\infty$. \nThe paper gives a construction of the tensor category $Rep(\\underline{P})$, possessing nice universal properties among tensor categories over the category $\\mathtt{sVect}$ of finite-dimensional complex vector superspaces. \nFirst, it is the \"abelian envelope\" of the Deligne category corresponding to the periplectic Lie superalgebra, in the sense of arXiv:1511.07699. \nSecondly, given a tensor category $\\mathcal{C}$ over $\\mathtt{sVect}$, exact tensor functors $Rep(\\underline{P})\\longrightarrow \\mathcal{C}$ classify pairs $(X, \\omega)$ in $\\mathcal{C}$ where $\\omega: X \\otimes X \\to \\Pi \\mathbf{1}$ is a non-degenerate symmetric form and $X$ not annihilated by any Schur functor. \nThe category $Rep(\\underline{P})$ is constructed in two ways. The first construction is through an explicit limit of the tensor categories $Rep(\\mathfrak{p}(n))$ ($n\\geq 1$) under Duflo-Serganova functors. The second construction (inspired by P. Etingof) describes $Rep(\\underline{P})$ as the category of representations of a periplectic Lie supergroup in the Deligne category $\\mathtt{sVect} \\boxtimes Rep(\\underline{GL}_t)$. \nAn upcoming paper by the authors will give results on the abelian and tensor structure of $Rep(\\underline{P})$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2021-21-3-507-565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We study stabilization of finite-dimensional representations of the periplectic Lie superalgebras $\mathfrak{p}(n)$ as $n \to \infty$. The paper gives a construction of the tensor category $Rep(\underline{P})$, possessing nice universal properties among tensor categories over the category $\mathtt{sVect}$ of finite-dimensional complex vector superspaces. First, it is the "abelian envelope" of the Deligne category corresponding to the periplectic Lie superalgebra, in the sense of arXiv:1511.07699. Secondly, given a tensor category $\mathcal{C}$ over $\mathtt{sVect}$, exact tensor functors $Rep(\underline{P})\longrightarrow \mathcal{C}$ classify pairs $(X, \omega)$ in $\mathcal{C}$ where $\omega: X \otimes X \to \Pi \mathbf{1}$ is a non-degenerate symmetric form and $X$ not annihilated by any Schur functor. The category $Rep(\underline{P})$ is constructed in two ways. The first construction is through an explicit limit of the tensor categories $Rep(\mathfrak{p}(n))$ ($n\geq 1$) under Duflo-Serganova functors. The second construction (inspired by P. Etingof) describes $Rep(\underline{P})$ as the category of representations of a periplectic Lie supergroup in the Deligne category $\mathtt{sVect} \boxtimes Rep(\underline{GL}_t)$. An upcoming paper by the authors will give results on the abelian and tensor structure of $Rep(\underline{P})$.
分享
查看原文
Deligne范畴与泛泛李超代数
我们研究了李超代数$\mathfrak{p}(n)$的有限维表示为$n\to\infty$的稳定性。本文给出了张量范畴$Rep(\dunderline{P})$的一个构造,它在有限维复向量超空间的范畴$\matht{sVect}$上的张量范畴之间具有良好的普适性质。首先,它是Deligne范畴的“阿贝尔包络”,对应于周共晶李超代数,在arXiv:11511.07699的意义上。其次,给定$\mathtt{sVect}$上的张量范畴$\mathcal{C}$,精确张量函子$Rep(\anderline{P})\longrightarrow\mathcal{C}$对$\mathcal{C}$中的$(X,\omega)$进行分类,其中$\omega:X\otimes X\to\Pi\mathbf{1}$是非退化对称形式,$X$不被任何Schur函子湮灭。类别$Rep(\dunderline{P})$有两种构造方式。第一个构造是通过Duflo-Serganova函子下张量范畴$Rep(\mathfrak{p}(n))$($n\geq1$)的显式极限。第二种构造(受P.Etingof启发)将$Rep(\dunderline{P})$描述为Deligne范畴$\mathtt{sVect}\boxtimes Rep(\aunderline{GL}_t)$。作者即将发表的一篇论文将给出$Rep(\underline{P})$的阿贝尔和张量结构的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信