{"title":"Between Pathology and Well-Behaviour – A Possible Foundation for Tame Mathematics","authors":"Angelo-Vlad Moldovan","doi":"10.24193/subbphil.2022.sp.iss.04","DOIUrl":null,"url":null,"abstract":"\"An in-depth examination of the foundations of mathematics reveals how its treatment is centered around the topic of “unique foundation vs. no need for a foundation” in a traditional setting. In this paper, I show that by applying Shelah’s stability procedures to mathematics, we confine ourselves to a certain section that manages to escape the Gödel phenomenon and can be classified. We concentrate our attention on this mainly because of its tame nature. This result makes way for a new approach in foundations through model-theoretic methods. We then cover Penelope Maddy’s “foundational virtues” and what it means for a theory to be foundational. Having explored what a tame foundation can amount to, we argue that it can fulfil some of Maddy’s foundational qualities. In the last part, we will examine the consequences of this new paradigm – some philosophical in nature – on topics like philosophy of mathematical practice, the incompleteness theorems and others. Keywords: foundations of mathematics, tame mathematics, clarity-based knowledge, philosophy of mathematical practice, incompleteness theorems \"","PeriodicalId":40516,"journal":{"name":"Studia Universitatis Babes-Bolyai Philosophia","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis Babes-Bolyai Philosophia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbphil.2022.sp.iss.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0
Abstract
"An in-depth examination of the foundations of mathematics reveals how its treatment is centered around the topic of “unique foundation vs. no need for a foundation” in a traditional setting. In this paper, I show that by applying Shelah’s stability procedures to mathematics, we confine ourselves to a certain section that manages to escape the Gödel phenomenon and can be classified. We concentrate our attention on this mainly because of its tame nature. This result makes way for a new approach in foundations through model-theoretic methods. We then cover Penelope Maddy’s “foundational virtues” and what it means for a theory to be foundational. Having explored what a tame foundation can amount to, we argue that it can fulfil some of Maddy’s foundational qualities. In the last part, we will examine the consequences of this new paradigm – some philosophical in nature – on topics like philosophy of mathematical practice, the incompleteness theorems and others. Keywords: foundations of mathematics, tame mathematics, clarity-based knowledge, philosophy of mathematical practice, incompleteness theorems "