Locally homogeneous non-gradient quasi-Einstein 3-manifolds

IF 0.5 4区 数学 Q3 MATHEMATICS
Alice Lim
{"title":"Locally homogeneous non-gradient quasi-Einstein 3-manifolds","authors":"Alice Lim","doi":"10.1515/advgeom-2021-0036","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we classify the compact locally homogeneous non-gradient m-quasi Einstein 3- manifolds. Along the way, we also prove that given a compact quotient of a Lie group of any dimension that is m-quasi Einstein, the potential vector field X must be left invariant and Killing. We also classify the nontrivial m-quasi Einstein metrics that are a compact quotient of the product of two Einstein metrics. We also show that S1 is the only compact manifold of any dimension which admits a metric which is nontrivially m-quasi Einstein and Einstein.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract In this paper, we classify the compact locally homogeneous non-gradient m-quasi Einstein 3- manifolds. Along the way, we also prove that given a compact quotient of a Lie group of any dimension that is m-quasi Einstein, the potential vector field X must be left invariant and Killing. We also classify the nontrivial m-quasi Einstein metrics that are a compact quotient of the product of two Einstein metrics. We also show that S1 is the only compact manifold of any dimension which admits a metric which is nontrivially m-quasi Einstein and Einstein.
局部齐次非梯度拟爱因斯坦3-流形
摘要本文对紧致局部齐次非梯度m-拟Einstein 3-流形进行了分类。在此过程中,我们还证明了给定任意维度的李群的紧致商为m-拟爱因斯坦,势向量场X必须保持不变且为Killing。我们还对非平凡m-拟爱因斯坦度量进行了分类,它是两个爱因斯坦度量乘积的紧致商。我们还证明了S1是任何维度上唯一允许度量的紧致流形,该度量是非平凡的m-拟爱因斯坦和爱因斯坦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信