Effect of Chemical Reclamation on the Physiological and Chemical Response of Rice Grown in Varying Salinity and Sodicity Conditions

Q2 Agricultural and Biological Sciences
A. Qadir
{"title":"Effect of Chemical Reclamation on the Physiological and Chemical Response of Rice Grown in Varying Salinity and Sodicity Conditions","authors":"A. Qadir","doi":"10.17957/ijab/15.1813","DOIUrl":null,"url":null,"abstract":"Salinity and sodicity are the major abiotic constraints that prevail in arid and semi-arid regions. Proper management is required for productive use of this land. Reclamation of sodic and saline-sodic soils is highly site-specific that describes the diverse response of different soils to different amendments. These reclamation practices also alter the plant's physiological and ionic characteristics. This experiment aimed to better understand the physiological and ionic responses of rice crop at different salinity/sodicity levels. A lysimeter experiment was set forth with soil having ECe (dS m-1):SAR (mmol L-1)1/2 levels as 4:20, 8:40, 12:60 and 16:80 and all the levels were treated with organic (farm manure at 25 Mg ha-1) and inorganic (gypsum at 100% soil gypsum requirement (SGR) and sulphuric acid equivalent to 100% SGR) amendments keeping no ammendment as control. Results revealed that the maximum relative increase in physiological attributes (photosynthetic rate, transpiration rate, stomatal conductance and total chlorophyll contents), ionic contents (nitrogen, potassium and K:Na ratio) and growth of rice were recorded with sulphuric acid application followed by gypsum. On an average 25%, 31% and 45% increase in biological yield, plant height and paddy yield, respectively was observed with sulphuric acid application over control. It is concluded that sulphuric acid and gypsum both were the best amendments for reclamation of soil having a low level of salinity/sodicity whereas, at higher salinity/sodicity levels, only sulphuric acid seemed better for improved rice production. © 2021 Friends Science Publishers","PeriodicalId":13769,"journal":{"name":"International Journal of Agriculture and Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agriculture and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17957/ijab/15.1813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4

Abstract

Salinity and sodicity are the major abiotic constraints that prevail in arid and semi-arid regions. Proper management is required for productive use of this land. Reclamation of sodic and saline-sodic soils is highly site-specific that describes the diverse response of different soils to different amendments. These reclamation practices also alter the plant's physiological and ionic characteristics. This experiment aimed to better understand the physiological and ionic responses of rice crop at different salinity/sodicity levels. A lysimeter experiment was set forth with soil having ECe (dS m-1):SAR (mmol L-1)1/2 levels as 4:20, 8:40, 12:60 and 16:80 and all the levels were treated with organic (farm manure at 25 Mg ha-1) and inorganic (gypsum at 100% soil gypsum requirement (SGR) and sulphuric acid equivalent to 100% SGR) amendments keeping no ammendment as control. Results revealed that the maximum relative increase in physiological attributes (photosynthetic rate, transpiration rate, stomatal conductance and total chlorophyll contents), ionic contents (nitrogen, potassium and K:Na ratio) and growth of rice were recorded with sulphuric acid application followed by gypsum. On an average 25%, 31% and 45% increase in biological yield, plant height and paddy yield, respectively was observed with sulphuric acid application over control. It is concluded that sulphuric acid and gypsum both were the best amendments for reclamation of soil having a low level of salinity/sodicity whereas, at higher salinity/sodicity levels, only sulphuric acid seemed better for improved rice production. © 2021 Friends Science Publishers
化学改良对不同盐碱条件下水稻生理化学反应的影响
盐度和碱度是干旱和半干旱地区主要的非生物限制因素。要有效利用这片土地,必须妥善管理。碱土和盐碱土的开垦具有高度的场地特异性,描述了不同土壤对不同改良剂的不同反应。这些开垦的做法也改变了植物的生理和离子特性。本试验旨在更好地了解水稻作物在不同盐/钠水平下的生理和离子响应。以ECe (dS m-1):SAR (mmol L-1)1/2水平分别为4:20、8:40、12:60和16:80的土壤进行了渗滤试验,各水平分别用有机肥(25 Mg ha-1)和无机(100%土壤石膏需取量(SGR)的石膏和相当于100% SGR的硫酸)改进剂处理,对照组不加任何改进剂。结果表明,施硫酸后施石膏对水稻生理性状(光合速率、蒸腾速率、气孔导度和总叶绿素含量)、离子含量(氮、钾和钾钠比)和生长的相对增幅最大。与对照相比,施用硫酸的生物产量、株高和水稻产量平均分别提高25%、31%和45%。结果表明,硫酸和石膏都是盐碱度较低土壤复垦的最佳改良剂,而在盐碱度较高的土壤中,只有硫酸对水稻增产效果较好。©2021朋友科学出版社
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Agriculture and Biology
International Journal of Agriculture and Biology AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.70
自引率
0.00%
发文量
40
审稿时长
5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信