A Hermite-interpolation discretization and a uniform path deformation for the spatial spectral domain integral equation method in multilayered media for TE polarization

Q3 Engineering
Rj Roeland Dilz, M. C. Beurden
{"title":"A Hermite-interpolation discretization and a uniform path deformation for the spatial spectral domain integral equation method in multilayered media for TE polarization","authors":"Rj Roeland Dilz, M. C. Beurden","doi":"10.2528/PIERB17112104","DOIUrl":null,"url":null,"abstract":"Two alternative approaches to the spatial spectral integral equation method are proposed. The first enhancement comprises a Hermite interpolation as the set of basis functions instead of the Gabor frame. The continuity, differentiability, equidistant spacing, and small support of these basis functions allows for an efficient and accurate numerical implementation. The second approach encompasses a method to transform between the spatial domain and the deformed path in the complexplane spectral domain. This method allows for more general path shapes, thereby removing the need to decompose the complex-plane spectral-domain path into distinct straight sections. Both enhancements are implemented for the case of TE polarization, and the results are validated against the finite element method and the rigorous coupled-wave analysis.","PeriodicalId":20829,"journal":{"name":"Progress In Electromagnetics Research B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress In Electromagnetics Research B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/PIERB17112104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Two alternative approaches to the spatial spectral integral equation method are proposed. The first enhancement comprises a Hermite interpolation as the set of basis functions instead of the Gabor frame. The continuity, differentiability, equidistant spacing, and small support of these basis functions allows for an efficient and accurate numerical implementation. The second approach encompasses a method to transform between the spatial domain and the deformed path in the complexplane spectral domain. This method allows for more general path shapes, thereby removing the need to decompose the complex-plane spectral-domain path into distinct straight sections. Both enhancements are implemented for the case of TE polarization, and the results are validated against the finite element method and the rigorous coupled-wave analysis.
多层介质中TE偏振空间谱域积分方程法的hermite插值离散化和均匀路径变形
提出了两种替代空间谱积分方程方法。第一增强包括埃尔米特插值作为基函数集合而不是Gabor帧。这些基函数的连续性、可微性、等距间距和小的支持允许高效和准确的数值实现。第二种方法包括在空间域和复平面光谱域中的变形路径之间进行变换的方法。该方法允许更通用的路径形状,从而无需将复杂的平面谱域路径分解为不同的直线部分。这两种增强都是针对TE偏振的情况实现的,并通过有限元方法和严格的耦合波分析验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress In Electromagnetics Research B
Progress In Electromagnetics Research B Engineering-Electrical and Electronic Engineering
CiteScore
2.70
自引率
0.00%
发文量
14
期刊介绍: Progress In Electromagnetics Research (PIER) B publishes peer-reviewed original, comprehensive and tutorial review articles on all aspects of electromagnetic theory and applications. It is a new journal in 2008, and freely available to all readers via the Internet. Manuscripts submitted to PIER B must not have been submitted simultaneously to other journals. Authors are solely responsible for the factual accuracy of their articles, and all articles are understood to have received clearance(s) for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信