You May Also Like... Privacy: Recommendation Systems Meet PIR

Adithya Vadapalli, Fattaneh Bayatbabolghani, Ryan Henry
{"title":"You May Also Like... Privacy: Recommendation Systems Meet PIR","authors":"Adithya Vadapalli, Fattaneh Bayatbabolghani, Ryan Henry","doi":"10.2478/popets-2021-0059","DOIUrl":null,"url":null,"abstract":"Abstract We describe the design, analysis, implementation, and evaluation of Pirsona, a digital content delivery system that realizes collaborative-filtering recommendations atop private information retrieval (PIR). This combination of seemingly antithetical primitives makes possible—for the first time—the construction of practically efficient e-commerce and digital media delivery systems that can provide personalized content recommendations based on their users’ historical consumption patterns while simultaneously keeping said consumption patterns private. In designing Pirsona, we have opted for the most performant primitives available (at the expense of rather strong non-collusion assumptions); namely, we use the recent computationally 1-private PIR protocol of Hafiz and Henry (PETS 2019.4) together with a carefully optimized 4PC Boolean matrix factorization.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2021 1","pages":"30 - 53"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2021-0059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract We describe the design, analysis, implementation, and evaluation of Pirsona, a digital content delivery system that realizes collaborative-filtering recommendations atop private information retrieval (PIR). This combination of seemingly antithetical primitives makes possible—for the first time—the construction of practically efficient e-commerce and digital media delivery systems that can provide personalized content recommendations based on their users’ historical consumption patterns while simultaneously keeping said consumption patterns private. In designing Pirsona, we have opted for the most performant primitives available (at the expense of rather strong non-collusion assumptions); namely, we use the recent computationally 1-private PIR protocol of Hafiz and Henry (PETS 2019.4) together with a carefully optimized 4PC Boolean matrix factorization.
你可能也喜欢。。。隐私:推荐系统满足PIR
摘要我们描述了Pirsona的设计、分析、实现和评估,这是一个数字内容交付系统,可在私人信息检索(PIR)上实现协作过滤推荐。这种看似对立的原语组合首次使构建实用高效的电子商务和数字媒体交付系统成为可能,这些系统可以根据用户的历史消费模式提供个性化内容推荐,同时保持所述消费模式的隐私。在设计Pirsona时,我们选择了可用的最具性能的原语(以相当强的非共谋假设为代价);即,我们使用Hafiz和Henry最近的计算1-私有PIR协议(PETS 2019.4)以及精心优化的4PC布尔矩阵分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信