Physics-Inspired Optimization in the QUBO Framework: Key Concepts and Approaches

IF 1.3 4区 物理与天体物理 Q4 PHYSICS, APPLIED
Spin Pub Date : 2023-08-30 DOI:10.1142/s2010324723400167
Lien-Po Yu, Chin-Fu Nien
{"title":"Physics-Inspired Optimization in the QUBO Framework: Key Concepts and Approaches","authors":"Lien-Po Yu, Chin-Fu Nien","doi":"10.1142/s2010324723400167","DOIUrl":null,"url":null,"abstract":"Quantum computing promises to have a tremendous advantage over its classical counterpart for solving computationally hard problems, yet remains in a relatively early stage for practical applications owing to the limited capabilities of today’s quantum computers. The approach to the special purposes of quantum computers by exploiting the special-purpose physics-inspired or quantum-inspired computers is emerging as a novel alternative to its quantum counterpart in tackling hard problems in high-performance computing. Inspired by physics, the Ising machine — a type of special-purpose computer that implements or emulates physics or quantum effects of the Ising model to speed up finding solutions to optimization problems — has recently become an active research area in the field of combinatorial optimization. This paper is to address the key enabling software and hardware technology underlying physics-inspired optimization using Ising machines in the unified quadratic unconstrained binary optimization (QUBO) framework for modeling and solving computationally hard combinatorial optimization problems, and with an aim to shed some light on the challenges and opportunities associated with the ever-growing landscape of this novel high-performance computing.","PeriodicalId":54319,"journal":{"name":"Spin","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spin","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s2010324723400167","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computing promises to have a tremendous advantage over its classical counterpart for solving computationally hard problems, yet remains in a relatively early stage for practical applications owing to the limited capabilities of today’s quantum computers. The approach to the special purposes of quantum computers by exploiting the special-purpose physics-inspired or quantum-inspired computers is emerging as a novel alternative to its quantum counterpart in tackling hard problems in high-performance computing. Inspired by physics, the Ising machine — a type of special-purpose computer that implements or emulates physics or quantum effects of the Ising model to speed up finding solutions to optimization problems — has recently become an active research area in the field of combinatorial optimization. This paper is to address the key enabling software and hardware technology underlying physics-inspired optimization using Ising machines in the unified quadratic unconstrained binary optimization (QUBO) framework for modeling and solving computationally hard combinatorial optimization problems, and with an aim to shed some light on the challenges and opportunities associated with the ever-growing landscape of this novel high-performance computing.
QUBO框架中物理启发的优化:关键概念和方法
量子计算有望在解决计算难题方面比经典计算具有巨大优势,但由于当今量子计算机的能力有限,它在实际应用中仍处于相对早期的阶段。利用特殊用途的物理启发或量子启发计算机来实现量子计算机的特殊目的的方法正在成为解决高性能计算中难题的量子对应物的新替代方案。受物理学的启发,伊辛机——一种实现或模拟伊辛模型的物理或量子效应以加速寻找优化问题解决方案的专用计算机——最近成为组合优化领域的一个活跃研究领域。本文旨在解决在统一二次无约束二进制优化(QUBO)框架中使用Ising机器进行物理启发优化的关键使能软件和硬件技术,以建模和解决计算困难的组合优化问题,并旨在揭示与这种新型高性能计算不断增长的前景相关的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spin
Spin Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
2.10
自引率
11.10%
发文量
34
期刊介绍: Spin electronics encompasses a multidisciplinary research effort involving magnetism, semiconductor electronics, materials science, chemistry and biology. SPIN aims to provide a forum for the presentation of research and review articles of interest to all researchers in the field. The scope of the journal includes (but is not necessarily limited to) the following topics: *Materials: -Metals -Heusler compounds -Complex oxides: antiferromagnetic, ferromagnetic -Dilute magnetic semiconductors -Dilute magnetic oxides -High performance and emerging magnetic materials *Semiconductor electronics *Nanodevices: -Fabrication -Characterization *Spin injection *Spin transport *Spin transfer torque *Spin torque oscillators *Electrical control of magnetic properties *Organic spintronics *Optical phenomena and optoelectronic spin manipulation *Applications and devices: -Novel memories and logic devices -Lab-on-a-chip -Others *Fundamental and interdisciplinary studies: -Spin in low dimensional system -Spin in medical sciences -Spin in other fields -Computational materials discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信