ANN modelling approach for predicting SCC properties - Research considering Algerian experience. Part I. Development and analysis of models

M. Sahraoui, T. Bouziani
{"title":"ANN modelling approach for predicting SCC properties - Research considering Algerian experience. Part I. Development and analysis of models","authors":"M. Sahraoui, T. Bouziani","doi":"10.5281/ZENODO.4074773","DOIUrl":null,"url":null,"abstract":"This paper presents research on the use of artificial neural networks (ANNs) to predict fresh and hardened properties of self compacting concrete (SCC) made with Algerian materials. A multi-layer perceptron network with 5 nodes, 12 inputs, and 5 outputs is trained and optimized using a database of 167 mixtures collected from literature. The inputs for the ANN models are ordinary Portland cement (Cm), polycarboxylate ether superplasticizer (Sp), river sand (RS), crushed sand (CS), dune sand (DS), Gravel 3/8 (G1), Gravel 8/15 (G2), Water (W), Limestone filler (Lim), Marble powder (MP), blast furnace slag (Slag) and natural pozzolan (Pz). Instead, Slump flow (Slump), V-funnel, L-Box, static stability (Pi) and 28 days compressive strength (Rc28) were the outputs of the study. Results indicate that ANN models for data sets collected from literature have a strong potential for predicting 28 days compressive strength. Slump flow, V-funnel time and L-Box ratio could be moderately identified while an acceptable prediction has been obtained for static stability. Results have also confirmed by statistical parameters, Regression plots and residual analysis.","PeriodicalId":33130,"journal":{"name":"Journal of Building Materials and Structures","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.4074773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents research on the use of artificial neural networks (ANNs) to predict fresh and hardened properties of self compacting concrete (SCC) made with Algerian materials. A multi-layer perceptron network with 5 nodes, 12 inputs, and 5 outputs is trained and optimized using a database of 167 mixtures collected from literature. The inputs for the ANN models are ordinary Portland cement (Cm), polycarboxylate ether superplasticizer (Sp), river sand (RS), crushed sand (CS), dune sand (DS), Gravel 3/8 (G1), Gravel 8/15 (G2), Water (W), Limestone filler (Lim), Marble powder (MP), blast furnace slag (Slag) and natural pozzolan (Pz). Instead, Slump flow (Slump), V-funnel, L-Box, static stability (Pi) and 28 days compressive strength (Rc28) were the outputs of the study. Results indicate that ANN models for data sets collected from literature have a strong potential for predicting 28 days compressive strength. Slump flow, V-funnel time and L-Box ratio could be moderately identified while an acceptable prediction has been obtained for static stability. Results have also confirmed by statistical parameters, Regression plots and residual analysis.
预测SCC属性的人工神经网络建模方法-考虑阿尔及利亚经验的研究。第一部分:模型的开发与分析
本文研究了使用人工神经网络(ANNs)预测阿尔及利亚材料自密实混凝土(SCC)的新拌和硬化性能。使用从文献中收集的167个混合物的数据库来训练和优化具有5个节点、12个输入和5个输出的多层感知器网络。ANN模型的输入是普通硅酸盐水泥(Cm)、聚羧酸醚高效减水剂(Sp)、河砂(RS)、碎砂(CS)、沙丘砂(DS)、3/8砾石(G1)、8/15砾石(G2)、水(W)、石灰石填料(Lim)、大理石粉(MP)、高炉矿渣(矿渣)和天然火山灰(Pz)。相反,坍落度流量(Slump)、V型漏斗、L型箱、静态稳定性(Pi)和28天抗压强度(Rc28)是研究的结果。结果表明,从文献中收集的数据集的ANN模型在预测28天抗压强度方面具有很强的潜力。坍落度流量、V漏斗时间和L-Box比可以适度确定,而静态稳定性的预测可以接受。统计参数、回归图和残差分析也证实了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信