{"title":"A Review on the Techniques Used and Status of Equivalent Black Carbon Measurement in Two Major Asian Countries","authors":"Arpit Malik, Shankar G. Aggarwal","doi":"10.5572/ajae.2021.044","DOIUrl":null,"url":null,"abstract":"<div><p>Black Carbon (BC) is a major pollutant that poses immediate health as well as long-term climatic threat to human civilization. Globally, India and China are considered to be among the significant contributors of carbonaceous aerosol. Therefore, in the recent past, several studies on BC measurements have been conducted and reported in both these countries. Optical absorbance measurement techniques which give BC mass by measuring light absorbance of aerosol have been used widely. Keeping these facts in mind, here an attempt has been made to realise the current state of Equivalent Black Carbon (EBC) measurement done in both countries. Eighty EBC measurement studies published in last 15 years (2005–2020) are analysed on the basis of technique, instrumentation and various important parameters involved in measurements. It is found that EBC measurements in India and China contain large uncertainties, and available data are metrologically insufficient to realise spatial distribution and long-term temporal variation precisely. Furthermore, MERRA-2 Surface Black Carbon (SBC) levels and EBC measurements are compared and evaluated for biases between spatial and temporal variation of modelled data and ground measurements. It is observed that standardization of measurement technique and parameters involved in measurement is the need of the hour. Lack of a reference method creates inconsistency and discrepancy among the measurements. Recommendations for selection of parameter/instrument and cautious measures are provided as conclusion based on this review to improve overall metrology of BC.</p></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.5572/ajae.2021.044.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.5572/ajae.2021.044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Black Carbon (BC) is a major pollutant that poses immediate health as well as long-term climatic threat to human civilization. Globally, India and China are considered to be among the significant contributors of carbonaceous aerosol. Therefore, in the recent past, several studies on BC measurements have been conducted and reported in both these countries. Optical absorbance measurement techniques which give BC mass by measuring light absorbance of aerosol have been used widely. Keeping these facts in mind, here an attempt has been made to realise the current state of Equivalent Black Carbon (EBC) measurement done in both countries. Eighty EBC measurement studies published in last 15 years (2005–2020) are analysed on the basis of technique, instrumentation and various important parameters involved in measurements. It is found that EBC measurements in India and China contain large uncertainties, and available data are metrologically insufficient to realise spatial distribution and long-term temporal variation precisely. Furthermore, MERRA-2 Surface Black Carbon (SBC) levels and EBC measurements are compared and evaluated for biases between spatial and temporal variation of modelled data and ground measurements. It is observed that standardization of measurement technique and parameters involved in measurement is the need of the hour. Lack of a reference method creates inconsistency and discrepancy among the measurements. Recommendations for selection of parameter/instrument and cautious measures are provided as conclusion based on this review to improve overall metrology of BC.