Synthesis and Antidiabetic Evaluation of N’-Benzylidenebenzohydrazide Derivatives by In Silico Studies

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
Yusuf Syaril Alam, P. Pudjiastuti, Saipul Maulana, Nur Rahmayanti Afifah, F. Martak, A. Fadlan, T. Wahyuni, S. Arief
{"title":"Synthesis and Antidiabetic Evaluation of N’-Benzylidenebenzohydrazide Derivatives by In Silico Studies","authors":"Yusuf Syaril Alam, P. Pudjiastuti, Saipul Maulana, Nur Rahmayanti Afifah, F. Martak, A. Fadlan, T. Wahyuni, S. Arief","doi":"10.22146/ijc.82073","DOIUrl":null,"url":null,"abstract":"Two new of N’-benzylidenebenzohydrazide (NBB) derivatives were successfully synthesized and yielded 50–58%. FTIR, ESI-MS, 1H-NMR and 13C-NMR were used to investigate the characteristic of NBB derivates. The structure and relationship of NBB derivatives into α-glucosidase and α-amylase as good targets for diabetes treatment were evaluated using in silico screening. Molecular Mechanics-Poisson Boltzmann/Generalized Born Surface Area (MM-PB/GBSA) was used to calculate the free binding energy (ΔGbind (MM-GBSA)) of NBB to α-glucosidase and α-amylase receptors showed that the results of −0.45 and −20.79 kcal/mol respectively. In the ortho position, NBB derivatives exhibited electron donating groups (EDG like -OCH3, -OH and -Cl with binding free energies of −21.94, −6.71 and 21.94, respectively, and acarbose, a native ligand energy of 32.62 kcal/mol. In addition, the binding free energy of N-2-(-OCH3, -OH and -Cl)-NBB to the α-amylase receptor showed the number of −39.33, −43.96, −42.81, respectively and −46.51 kcal/mol in comparing with a native ligand. As a result, it was found that all the NBB derivatives were able to interact with several amino acids in the α-glucosidase cavity as well as the native ones, including Ala281, Asp282, and Asp616.  NBB and native ligand showed similar interaction between α-amylase with Gly110 amino acid residue.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.82073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two new of N’-benzylidenebenzohydrazide (NBB) derivatives were successfully synthesized and yielded 50–58%. FTIR, ESI-MS, 1H-NMR and 13C-NMR were used to investigate the characteristic of NBB derivates. The structure and relationship of NBB derivatives into α-glucosidase and α-amylase as good targets for diabetes treatment were evaluated using in silico screening. Molecular Mechanics-Poisson Boltzmann/Generalized Born Surface Area (MM-PB/GBSA) was used to calculate the free binding energy (ΔGbind (MM-GBSA)) of NBB to α-glucosidase and α-amylase receptors showed that the results of −0.45 and −20.79 kcal/mol respectively. In the ortho position, NBB derivatives exhibited electron donating groups (EDG like -OCH3, -OH and -Cl with binding free energies of −21.94, −6.71 and 21.94, respectively, and acarbose, a native ligand energy of 32.62 kcal/mol. In addition, the binding free energy of N-2-(-OCH3, -OH and -Cl)-NBB to the α-amylase receptor showed the number of −39.33, −43.96, −42.81, respectively and −46.51 kcal/mol in comparing with a native ligand. As a result, it was found that all the NBB derivatives were able to interact with several amino acids in the α-glucosidase cavity as well as the native ones, including Ala281, Asp282, and Asp616.  NBB and native ligand showed similar interaction between α-amylase with Gly110 amino acid residue.
N ' -苄基苯并肼衍生物的合成及其抗糖尿病作用的硅研究
成功合成了两种新的N’-亚苄基苯并酰肼(NBB)衍生物,产率为50–58%。采用FTIR、ESI-MS、1H-NMR和13C-NMR对NBB衍生物进行了表征。利用计算机筛选方法评价了NBB衍生物与α-葡萄糖苷酶和α-淀粉酶的结构及其相互关系,它们是治疗糖尿病的良好靶点。用分子力学Poisson-Boltzmann/广义Born表面积(MM-PB/GBSA)计算了NBB与α-葡萄糖苷酶和α-淀粉酶受体的自由结合能ΔGbind(MM-GBSA),结果分别为−0.45和−20.79 kcal/mol。在邻位,NBB衍生物表现出供电子基团(EDG样-OCH3、-OH和-Cl,结合自由能分别为−21.94、−6.71和21.94,阿卡波糖,天然配体能量为32.62 kcal/mol。此外,N-2-(-OCH3,-OH和Cl)-NBB与α-淀粉酶受体的结合自由能为−39.33、−43.96、−42.81,与天然配体相比分别为−46.51 kcal/mol。结果发现,所有NBB衍生物都能与α-葡萄糖苷酶腔中的几种氨基酸以及天然氨基酸相互作用,包括Ala281、Asp282和Asp616。NBB和天然配体在α-淀粉酶和Gly110氨基酸残基之间表现出相似的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indonesian Journal of Chemistry
Indonesian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
106
审稿时长
15 weeks
期刊介绍: Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信