Context-specific independencies in stratified chain regression graphical models

IF 1.5 2区 数学 Q2 STATISTICS & PROBABILITY
Bernoulli Pub Date : 2021-05-01 DOI:10.3150/20-BEJ1302
F. Nicolussi, M. Cazzaro
{"title":"Context-specific independencies in stratified chain regression graphical models","authors":"F. Nicolussi, M. Cazzaro","doi":"10.3150/20-BEJ1302","DOIUrl":null,"url":null,"abstract":"Graphical models are a useful tool with increasing diffusion. In the categorical variable framework, they provide important visual support to understand the relationships among the considered variables. Besides, particular chain graphical models are suitable to represent multivariate regression models. However, the associated parameterization, such as marginal log-linear models, is often difficult to interpret when the number of variables increases because of a large number of parameters involved. On the contrary, conditional and marginal independencies reduce the number of parameters needed to represent the joint probability distribution of the variables. In compliance with the parsimonious principle, it is worthwhile to consider also the so-called context-specific independencies, which are conditional independencies holding for particular values of the variables in the conditioning set. In this work, we propose a particular chain graphical model able to represent these context-specific independencies through labeled arcs. We provide also the Markov properties able to describe marginal, conditional, and context-specific independencies from this new chain graph. Finally, we show the results in an application to a real data set.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":"27 1","pages":"2091-2116"},"PeriodicalIF":1.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/20-BEJ1302","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

Graphical models are a useful tool with increasing diffusion. In the categorical variable framework, they provide important visual support to understand the relationships among the considered variables. Besides, particular chain graphical models are suitable to represent multivariate regression models. However, the associated parameterization, such as marginal log-linear models, is often difficult to interpret when the number of variables increases because of a large number of parameters involved. On the contrary, conditional and marginal independencies reduce the number of parameters needed to represent the joint probability distribution of the variables. In compliance with the parsimonious principle, it is worthwhile to consider also the so-called context-specific independencies, which are conditional independencies holding for particular values of the variables in the conditioning set. In this work, we propose a particular chain graphical model able to represent these context-specific independencies through labeled arcs. We provide also the Markov properties able to describe marginal, conditional, and context-specific independencies from this new chain graph. Finally, we show the results in an application to a real data set.
分层链回归图形模型中上下文特定的独立性
随着扩散的增加,图形模型是一个有用的工具。在分类变量框架中,它们为理解所考虑的变量之间的关系提供了重要的视觉支持。此外,特定的链图模型适合表示多元回归模型。然而,当变量数量增加时,相关的参数化,如边际对数线性模型,往往难以解释,因为涉及大量参数。相反,条件独立性和边际独立性减少了表示变量联合概率分布所需的参数数量。遵循简约原则,也值得考虑所谓的上下文特定独立性,这是条件独立性,适用于条件集中变量的特定值。在这项工作中,我们提出了一个特殊的链图模型,能够通过标记弧来表示这些特定于上下文的独立性。我们还提供了马尔可夫属性,能够从这个新的链图中描述边际、条件和特定于上下文的独立性。最后,我们在一个实际数据集的应用中展示了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bernoulli
Bernoulli 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
116
审稿时长
6-12 weeks
期刊介绍: BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work. BERNOULLI will publish: Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed. Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research: Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments. Scholarly written papers on some historical significant aspect of statistics and probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信