J. Piermattey, Maicol Ahumedo, Y. Heuze, Juan Soriano, Marisa Salinas
{"title":"New nonsteroidal molecules as blockers of the steroidogenic pathway","authors":"J. Piermattey, Maicol Ahumedo, Y. Heuze, Juan Soriano, Marisa Salinas","doi":"10.2174/1573408018666220106151712","DOIUrl":null,"url":null,"abstract":"\n\nBackground: Testosterone circulating levels decrease in aging. This fact affects the emotional response to captivating pictures. Therefore, naturally increasing androgens within neurons could be a way to improve the mood of agedpeople.\n\n\n\nThis study aimed to determine the biological activity of new nonsteroidal derivatives of 2-aminonaphthalene-1,4-dione (2-amino-3-iodonaphthalene-1,4-dione and 2-(iodoamino)-3-methylnaphthalene-1,4-dione) as inhibitors of the aldo-keto reductase 1 enzymes (AKR1C1, AKR1C2).\n\n\n\nThe 2-amino-3-iodonaphthalene-1,4-dione and 2-(iodoamino)-3-methylnaphthalene-1,4-dione were synthesized, and their effect in vivo and in vitro was determined. The human prostate cell membrane was used as a source of steroidogenic enzymes. The 2-amino-3-iodonaphthalene-1,4-dione and 2-(iodoamino)-3-methylnaphthalene-1,4-dione bindings to the androgen receptors were also assayed using cytosol from the rat prostate. In vivo experiments, we determined the effects of 2-amino-3-iodonaphthalene-1,4-dione, 2-(iodoamino)-3-methylnaphthalene-1,4-dione on the weight of androgen-dependent glands of castrated hamsters treated with testosterone and finasteride or 2-amino-3-iodonaphthalene-1,4-dione or 2-(iodoamino)-3-methylnaphthalene-1,4-dione was determined.\n\n\n\n2-amino-3-iodonaphthalene-1,4-dione and 2-(iodoamino)-3-methylnaphthalene-1,4-dione inhibited AKR1C1 enzyme activity with an IC50 value of 420 nM (2-amino-3-iodonaphthalene-1,4-dione) and 1.95 µM (2-(iodoamino)-3-methylnaphthalene-1,4-dione), respectively. They also blocked AKR1C2 with an IC50 value of 300 nM (2-amino-3-iodonaphthalene-1,4-dione) and 1.52 µM (2-(iodoamino)-3-methylnaphthalene-1,4-dione). Thus 2-amino-3-iodonaphthalene-1,4-dione and 2-(iodoamino)-3-methylnaphthalene-1,4-dione prevent the formation of 3α and 3β-androstanediols. Moreover, these compounds did not bind to AR and did not reduce prostate and seminal vesicle weight. The latter is because of the accumulation of dihydrotestosterone, which is an anabolic androgen.\n\n\n\n2-amino-3-iodonaphthalene-1,4-dione and 2-(iodoamino)-3-methylnaphthalene-1,4-dione inhibited AKR1C1 and AKR1C2 enzyme activity; consequently, dihydrotestosterone was accumulated in androgen-dependent glands. These derivatives could potentially use therapeutics via direct nasal administration in aged patients, increasing DHT in neurons.\n","PeriodicalId":35405,"journal":{"name":"Current Enzyme Inhibition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Enzyme Inhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1573408018666220106151712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Testosterone circulating levels decrease in aging. This fact affects the emotional response to captivating pictures. Therefore, naturally increasing androgens within neurons could be a way to improve the mood of agedpeople.
This study aimed to determine the biological activity of new nonsteroidal derivatives of 2-aminonaphthalene-1,4-dione (2-amino-3-iodonaphthalene-1,4-dione and 2-(iodoamino)-3-methylnaphthalene-1,4-dione) as inhibitors of the aldo-keto reductase 1 enzymes (AKR1C1, AKR1C2).
The 2-amino-3-iodonaphthalene-1,4-dione and 2-(iodoamino)-3-methylnaphthalene-1,4-dione were synthesized, and their effect in vivo and in vitro was determined. The human prostate cell membrane was used as a source of steroidogenic enzymes. The 2-amino-3-iodonaphthalene-1,4-dione and 2-(iodoamino)-3-methylnaphthalene-1,4-dione bindings to the androgen receptors were also assayed using cytosol from the rat prostate. In vivo experiments, we determined the effects of 2-amino-3-iodonaphthalene-1,4-dione, 2-(iodoamino)-3-methylnaphthalene-1,4-dione on the weight of androgen-dependent glands of castrated hamsters treated with testosterone and finasteride or 2-amino-3-iodonaphthalene-1,4-dione or 2-(iodoamino)-3-methylnaphthalene-1,4-dione was determined.
2-amino-3-iodonaphthalene-1,4-dione and 2-(iodoamino)-3-methylnaphthalene-1,4-dione inhibited AKR1C1 enzyme activity with an IC50 value of 420 nM (2-amino-3-iodonaphthalene-1,4-dione) and 1.95 µM (2-(iodoamino)-3-methylnaphthalene-1,4-dione), respectively. They also blocked AKR1C2 with an IC50 value of 300 nM (2-amino-3-iodonaphthalene-1,4-dione) and 1.52 µM (2-(iodoamino)-3-methylnaphthalene-1,4-dione). Thus 2-amino-3-iodonaphthalene-1,4-dione and 2-(iodoamino)-3-methylnaphthalene-1,4-dione prevent the formation of 3α and 3β-androstanediols. Moreover, these compounds did not bind to AR and did not reduce prostate and seminal vesicle weight. The latter is because of the accumulation of dihydrotestosterone, which is an anabolic androgen.
2-amino-3-iodonaphthalene-1,4-dione and 2-(iodoamino)-3-methylnaphthalene-1,4-dione inhibited AKR1C1 and AKR1C2 enzyme activity; consequently, dihydrotestosterone was accumulated in androgen-dependent glands. These derivatives could potentially use therapeutics via direct nasal administration in aged patients, increasing DHT in neurons.
期刊介绍:
Current Enzyme Inhibition aims to publish all the latest and outstanding developments in enzyme inhibition studies with regards to the mechanisms of inhibitory processes of enzymes, recognition of active sites, and the discovery of agonists and antagonists, leading to the design and development of new drugs of significant therapeutic value. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of enzymes that can be exploited for drug development. Current Enzyme Inhibition is an essential journal for every pharmaceutical and medicinal chemist who wishes to have up-to-date knowledge about each and every development in the study of enzyme inhibition.