{"title":"A flow approach to the prescribed Gaussian curvature problem in ℍ𝑛+1","authors":"Haizhong Li, Ruijia Zhang","doi":"10.1515/acv-2022-0033","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the following prescribed Gaussian curvature problem: K = f ~ ( θ ) ϕ ( ρ ) α − 2 ϕ ( ρ ) 2 + | ∇ ¯ ρ | 2 , K=\\frac{\\tilde{f}(\\theta)}{\\phi(\\rho)^{\\alpha-2}\\sqrt{\\phi(\\rho)^{2}+\\lvert\\overline{\\nabla}\\rho\\rvert^{2}}}, a generalization of the Alexandrov problem ( α = n + 1 \\alpha=n+1 ) in hyperbolic space, where f ~ \\tilde{f} is a smooth positive function on S n \\mathbb{S}^{n} , 𝜌 is the radial function of the hypersurface, ϕ ( ρ ) = sinh ρ \\phi(\\rho)=\\sinh\\rho and 𝐾 is the Gauss curvature. By a flow approach, we obtain the existence and uniqueness of solutions to the above equations when α ≥ n + 1 \\alpha\\geq n+1 . Our argument provides a parabolic proof in smooth category for the Alexandrov problem in H n + 1 \\mathbb{H}^{n+1} . We also consider the cases 2 < α ≤ n + 1 2<\\alpha\\leq n+1 under the evenness assumption of f ~ \\tilde{f} and prove the existence of solutions to the above equations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0033","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we study the following prescribed Gaussian curvature problem: K = f ~ ( θ ) ϕ ( ρ ) α − 2 ϕ ( ρ ) 2 + | ∇ ¯ ρ | 2 , K=\frac{\tilde{f}(\theta)}{\phi(\rho)^{\alpha-2}\sqrt{\phi(\rho)^{2}+\lvert\overline{\nabla}\rho\rvert^{2}}}, a generalization of the Alexandrov problem ( α = n + 1 \alpha=n+1 ) in hyperbolic space, where f ~ \tilde{f} is a smooth positive function on S n \mathbb{S}^{n} , 𝜌 is the radial function of the hypersurface, ϕ ( ρ ) = sinh ρ \phi(\rho)=\sinh\rho and 𝐾 is the Gauss curvature. By a flow approach, we obtain the existence and uniqueness of solutions to the above equations when α ≥ n + 1 \alpha\geq n+1 . Our argument provides a parabolic proof in smooth category for the Alexandrov problem in H n + 1 \mathbb{H}^{n+1} . We also consider the cases 2 < α ≤ n + 1 2<\alpha\leq n+1 under the evenness assumption of f ~ \tilde{f} and prove the existence of solutions to the above equations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.