求助PDF
{"title":"The topological modular forms of \n \n \n R\n \n P\n 2\n \n \n $\\mathbb {R}P^2$\n and \n \n \n R\n \n P\n 2\n \n ∧\n C\n \n P\n 2\n \n \n $\\mathbb {R}P^2 \\wedge \\mathbb {C}P^2$","authors":"Agnès Beaudry, Irina Bobkova, Viet-Cuong Pham, Zhouli Xu","doi":"10.1112/topo.12263","DOIUrl":null,"url":null,"abstract":"<p>We study the elliptic spectral sequence computing <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mi>m</mi>\n <msub>\n <mi>f</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$tmf_*(\\mathbb {R}P^2)$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mi>m</mi>\n <msub>\n <mi>f</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n <mo>∧</mo>\n <mi>C</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$tmf_* (\\mathbb {R} P^2 \\wedge \\mathbb {C} P^2)$</annotation>\n </semantics></math>. Specifically, we compute all differentials and resolve exotic extensions by 2, <math>\n <semantics>\n <mi>η</mi>\n <annotation>$\\eta$</annotation>\n </semantics></math>, and <math>\n <semantics>\n <mi>ν</mi>\n <annotation>$\\nu$</annotation>\n </semantics></math>. For <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mi>m</mi>\n <msub>\n <mi>f</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n <mo>∧</mo>\n <mi>C</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$tmf_* (\\mathbb {R} P^2 \\wedge \\mathbb {C} P^2)$</annotation>\n </semantics></math>, we also compute the effect of the <math>\n <semantics>\n <msub>\n <mi>v</mi>\n <mn>1</mn>\n </msub>\n <annotation>$v_1$</annotation>\n </semantics></math>-self maps of <math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n <mo>∧</mo>\n <mi>C</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {R} P^2 \\wedge \\mathbb {C} P^2$</annotation>\n </semantics></math> on <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mi>m</mi>\n <mi>f</mi>\n </mrow>\n <annotation>$tmf$</annotation>\n </semantics></math>-homology.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
引用
批量引用
Abstract
We study the elliptic spectral sequence computing
t
m
f
∗
(
R
P
2
)
$tmf_*(\mathbb {R}P^2)$
and
t
m
f
∗
(
R
P
2
∧
C
P
2
)
$tmf_* (\mathbb {R} P^2 \wedge \mathbb {C} P^2)$
. Specifically, we compute all differentials and resolve exotic extensions by 2,
η
$\eta$
, and
ν
$\nu$
. For
t
m
f
∗
(
R
P
2
∧
C
P
2
)
$tmf_* (\mathbb {R} P^2 \wedge \mathbb {C} P^2)$
, we also compute the effect of the
v
1
$v_1$
-self maps of
R
P
2
∧
C
P
2
$\mathbb {R} P^2 \wedge \mathbb {C} P^2$
on
t
m
f
$tmf$
-homology.
rp2 $\mathbb {R}P^2$和rp2∧cp2 $\mathbb {R}P^2 \wedge \mathbb {C}P^2$的拓扑模形式
研究了椭圆谱序列计算tmf∗(R p2)$ tmf_*(\mathbb {R}P^2)$和tmf * (rp2∧cp2) $tmf_* (\mathbb {R} P^2 \wedge\mathbb {C} P^2)$。具体来说,我们计算了所有的微分,并通过2,η $\eta$和ν $\nu$来解析奇异的扩展。对于t m f * (rp2∧cp2)$tmf_* (\mathbb {R} P^2 \wedge \mathbb {C} P^2)$,我们还计算了rp2∧cp2 $\mathbb {R} P^2 \wedge \mathbb {C} P^2$的v1 $v_1$ -自映射的作用T mf$ tmf$ -同源性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。