{"title":"Topological pressure of a factor map for nonautonomous dynamical systems","authors":"Lei Liu, Cao Zhao","doi":"10.1080/14689367.2023.2182183","DOIUrl":null,"url":null,"abstract":"Let be a compact metric space and be a sequence of continuous maps from X to itself. Denote by the sequence and by the induced nonautonomous dynamical system. In this paper, we give the definitions of upper capacity topological pressure and Pesin-Pitskel topological pressure on a noncompact subset for nonautonomous dynamical systems from the dimension theory. Moreover, we propose the equivalent definition of Pesin-Pitskel topological pressure and investigate some properties of topological pressure. In contrast to Bowen's inequality, we discuss a relation for two topological pressures and establish an inequality formula for two topological pressures with a factor map of nonautonomous dynamical systems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2182183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a compact metric space and be a sequence of continuous maps from X to itself. Denote by the sequence and by the induced nonautonomous dynamical system. In this paper, we give the definitions of upper capacity topological pressure and Pesin-Pitskel topological pressure on a noncompact subset for nonautonomous dynamical systems from the dimension theory. Moreover, we propose the equivalent definition of Pesin-Pitskel topological pressure and investigate some properties of topological pressure. In contrast to Bowen's inequality, we discuss a relation for two topological pressures and establish an inequality formula for two topological pressures with a factor map of nonautonomous dynamical systems.