{"title":"The underappreciated role of transboundary pollution in future air quality and health improvements in China","authors":"Jun-Wei Xu, Jintai Lin, Dan Tong, Lulu Chen","doi":"10.5194/acp-23-10075-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Studies assessing the achievability of future air quality goals in China have focused on the role of reducing China's domestic emissions, yet the influence of transboundary pollution of foreign origins has been largely underappreciated. Here, we assess the extent to which future changes in foreign transboundary pollution would affect the achievability of air quality goals in 2030 and 2060 for China. We find that in 2030, under the current-policy scenario in China, transboundary contributions to\npopulation-weighted PM2.5 in China would be reduced by 29 % (1.2 µg m−3) as foreign countries transition from the fossil-fuel-intensive to the low-carbon pathway. By 2060, the difference would be increased to 45 % (1.8 µg m−3). Adopting the low-carbon instead of the fossil-fuel-intensive pathway in foreign countries would prevent 10 million Chinese people from being exposed to PM2.5 concentrations above China's ambient air quality standard (35 µg m−3) in 2030 and 5 million Chinese people from being exposed to PM2.5 concentrations above the World Health Organization air quality guideline (5 µg m−3) in 2060. Meanwhile, China adopting the carbon-neutral pathway rather than its current pathway would also be helpful\nto reduce transboundary PM2.5 produced from the chemical interactions\nbetween foreign-transported and locally emitted pollutants. In 2060,\nadopting a low-carbon pathway in China and foreign countries coincidently\nwould prevent 63 % of transboundary pollution and 386 000 associated\npremature deaths in China, relative to adopting a fossil-fuel-intensive\npathway in both regions. Thus, the influence of transboundary pollution\nshould be carefully considered when making future air quality expectations\nand pollution mitigation strategies.\n","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":" ","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/acp-23-10075-2023","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. Studies assessing the achievability of future air quality goals in China have focused on the role of reducing China's domestic emissions, yet the influence of transboundary pollution of foreign origins has been largely underappreciated. Here, we assess the extent to which future changes in foreign transboundary pollution would affect the achievability of air quality goals in 2030 and 2060 for China. We find that in 2030, under the current-policy scenario in China, transboundary contributions to
population-weighted PM2.5 in China would be reduced by 29 % (1.2 µg m−3) as foreign countries transition from the fossil-fuel-intensive to the low-carbon pathway. By 2060, the difference would be increased to 45 % (1.8 µg m−3). Adopting the low-carbon instead of the fossil-fuel-intensive pathway in foreign countries would prevent 10 million Chinese people from being exposed to PM2.5 concentrations above China's ambient air quality standard (35 µg m−3) in 2030 and 5 million Chinese people from being exposed to PM2.5 concentrations above the World Health Organization air quality guideline (5 µg m−3) in 2060. Meanwhile, China adopting the carbon-neutral pathway rather than its current pathway would also be helpful
to reduce transboundary PM2.5 produced from the chemical interactions
between foreign-transported and locally emitted pollutants. In 2060,
adopting a low-carbon pathway in China and foreign countries coincidently
would prevent 63 % of transboundary pollution and 386 000 associated
premature deaths in China, relative to adopting a fossil-fuel-intensive
pathway in both regions. Thus, the influence of transboundary pollution
should be carefully considered when making future air quality expectations
and pollution mitigation strategies.
期刊介绍:
Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.
The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.