{"title":"Dissipative Particle Dynamics Study of Strain Distribution in Capsules Deformed by Microfluidic Constrictions","authors":"N. Rajkamal, S. Vedantam","doi":"10.13052/ejcm2642-2085.30465","DOIUrl":null,"url":null,"abstract":"We present a dissipative particle dynamics (DPD) study of the deformation of capsules in microchannels. The strain in the membrane during this deformation causes the formation of temporary pores, which is termed mechanoporation. Mechanoporation is being considered as a means by which intracellular delivery of a broad range of cargo can be facilitated. In this work, we examine the strain distribution on the capsule membrane during transport of the capsule in converging-diverging microchannels of different constriction widths. The pore density is correlated to the strain in the membrane. We find that the highest strains and, consequently, the highest pore densities occur at intermediate channel widths. This occurs due to a competition of the bending of the membrane and fluid shear stresses in the flow.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.30465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a dissipative particle dynamics (DPD) study of the deformation of capsules in microchannels. The strain in the membrane during this deformation causes the formation of temporary pores, which is termed mechanoporation. Mechanoporation is being considered as a means by which intracellular delivery of a broad range of cargo can be facilitated. In this work, we examine the strain distribution on the capsule membrane during transport of the capsule in converging-diverging microchannels of different constriction widths. The pore density is correlated to the strain in the membrane. We find that the highest strains and, consequently, the highest pore densities occur at intermediate channel widths. This occurs due to a competition of the bending of the membrane and fluid shear stresses in the flow.