Galois representations of superelliptic curves

Pub Date : 2022-11-24 DOI:10.1017/S0017089522000386
Ariel Pacetti, Angel Villanueva
{"title":"Galois representations of superelliptic curves","authors":"Ariel Pacetti, Angel Villanueva","doi":"10.1017/S0017089522000386","DOIUrl":null,"url":null,"abstract":"Abstract A superelliptic curve over a discrete valuation ring \n$\\mathscr{O}$\n of residual characteristic p is a curve given by an equation \n$\\mathscr{C}\\;:\\; y^n=\\,f(x)$\n , with \n$\\textrm{Disc}(\\,f)\\neq 0$\n . The purpose of this article is to describe the Galois representation attached to such a curve under the hypothesis that f(x) has all its roots in the fraction field of \n$\\mathscr{O}$\n and that \n$p \\nmid n$\n . Our results are inspired on the algorithm given in Bouw and WewersGlasg (Math. J. 59(1) (2017), 77–108.) but our description is given in terms of a cluster picture as defined in Dokchitser et al. (Algebraic curves and their applications, Contemporary Mathematics, vol. 724 (American Mathematical Society, Providence, RI, 2019), 73–135.).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089522000386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A superelliptic curve over a discrete valuation ring $\mathscr{O}$ of residual characteristic p is a curve given by an equation $\mathscr{C}\;:\; y^n=\,f(x)$ , with $\textrm{Disc}(\,f)\neq 0$ . The purpose of this article is to describe the Galois representation attached to such a curve under the hypothesis that f(x) has all its roots in the fraction field of $\mathscr{O}$ and that $p \nmid n$ . Our results are inspired on the algorithm given in Bouw and WewersGlasg (Math. J. 59(1) (2017), 77–108.) but our description is given in terms of a cluster picture as defined in Dokchitser et al. (Algebraic curves and their applications, Contemporary Mathematics, vol. 724 (American Mathematical Society, Providence, RI, 2019), 73–135.).
分享
查看原文
超椭圆曲线的Galois表示
摘要残差特征p的离散赋值环$\mathscr{O}$上的超椭圆曲线是由方程$\mathscr{C}\;:\;给出的曲线;y^n=\,f(x)$,其中$\textrm{Disc}(\,f)\neq为0$。本文的目的是描述在假设f(x)的所有根都在$\mathscr{O}$的分式域中并且$p\nmid n$的情况下,附加到这样一条曲线上的伽罗瓦表示。我们的结果受到了Bouw和WewersGlasg(Math.J.59(1)(2017),77–108.)中给出的算法的启发,但我们的描述是根据Dokchitser等人定义的聚类图给出的(代数曲线及其应用,当代数学,第724卷(美国数学学会,普罗维登斯,RI,2019),73–135.)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信