{"title":"Crystal Bases of Modified \\(\\imath \\)quantum Groups of Certain Quasi-Split Types","authors":"Hideya Watanabe","doi":"10.1007/s10468-023-10207-z","DOIUrl":null,"url":null,"abstract":"<div><p>In order to see the behavior of <span>\\(\\imath \\)</span>canonical bases at <span>\\(q = \\infty \\)</span>, we introduce the notion of <span>\\(\\imath \\)</span>crystals associated to an <span>\\(\\imath \\)</span>quantum group of certain quasi-split type. The theory of <span>\\(\\imath \\)</span>crystals clarifies why <span>\\(\\imath \\)</span>canonical basis elements are not always preserved under natural homomorphisms. Also, we construct a projective system of <span>\\(\\imath \\)</span>crystals whose projective limit can be thought of as the <span>\\(\\imath \\)</span>canonical basis of the modified <span>\\(\\imath \\)</span>quantum group at <span>\\(q = \\infty \\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10207-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to see the behavior of \(\imath \)canonical bases at \(q = \infty \), we introduce the notion of \(\imath \)crystals associated to an \(\imath \)quantum group of certain quasi-split type. The theory of \(\imath \)crystals clarifies why \(\imath \)canonical basis elements are not always preserved under natural homomorphisms. Also, we construct a projective system of \(\imath \)crystals whose projective limit can be thought of as the \(\imath \)canonical basis of the modified \(\imath \)quantum group at \(q = \infty \).