Najat A. Amin, Harun Elcik, Alla Alpatova, Graciela Gonzalez-Gil, Bastiaan Blankert, Nadia Farhat, Johannes S. Vrouwenvelder, Noreddine Ghaffour
{"title":"Selected physical and chemical cleanings remove biofilm in seawater membrane distillation without causing pore wetting","authors":"Najat A. Amin, Harun Elcik, Alla Alpatova, Graciela Gonzalez-Gil, Bastiaan Blankert, Nadia Farhat, Johannes S. Vrouwenvelder, Noreddine Ghaffour","doi":"10.1038/s41545-023-00278-2","DOIUrl":null,"url":null,"abstract":"Membrane distillation (MD) is an emerging process with a proven ability to recover freshwater from streams with a wide range of salinities. However, MD is susceptible to biofouling. This study explores the efficiency of different cleaning strategies in biofilm removal during seawater MD. Hydraulic cleaning and chemical cleanings with 0.3%w w−1 ethylenediaminetetraacetic acid (EDTA), 0.3%w w−1 NaOCl, and 3%w w−1 citric acid were tested. The results showed that permeate flux recovery increased in the order of hydraulic cleaning <3%w w−1 citric acid <0.3%w w−1 NaOCl ≈0.3%w w−1 EDTA. Membrane cleanings substantially reduced the thickness of the residual biofilm layer and decreased its bacterial concentration and resistance to vapor pressure. The post-cleaning permeate conductivities were low suggesting that employed cleaning protocols did not cause pore wetting of hydrophobic polytetrafluoroethylene microporous (0.22 μm) membrane, and membrane rejection properties remained stable.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-12"},"PeriodicalIF":10.4000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-023-00278-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-023-00278-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane distillation (MD) is an emerging process with a proven ability to recover freshwater from streams with a wide range of salinities. However, MD is susceptible to biofouling. This study explores the efficiency of different cleaning strategies in biofilm removal during seawater MD. Hydraulic cleaning and chemical cleanings with 0.3%w w−1 ethylenediaminetetraacetic acid (EDTA), 0.3%w w−1 NaOCl, and 3%w w−1 citric acid were tested. The results showed that permeate flux recovery increased in the order of hydraulic cleaning <3%w w−1 citric acid <0.3%w w−1 NaOCl ≈0.3%w w−1 EDTA. Membrane cleanings substantially reduced the thickness of the residual biofilm layer and decreased its bacterial concentration and resistance to vapor pressure. The post-cleaning permeate conductivities were low suggesting that employed cleaning protocols did not cause pore wetting of hydrophobic polytetrafluoroethylene microporous (0.22 μm) membrane, and membrane rejection properties remained stable.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.