Impregnation of Fe3+ into MCM-41 Pores: Effect of Fe3+ Concentration on the Weight Percent of Fe-Frameworks and Fe-Non-Frameworks

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
S. Suyanta, A. Kuncaka, M. Mudasir
{"title":"Impregnation of Fe3+ into MCM-41 Pores: Effect of Fe3+ Concentration on the Weight Percent of Fe-Frameworks and Fe-Non-Frameworks","authors":"S. Suyanta, A. Kuncaka, M. Mudasir","doi":"10.22146/ijc.79468","DOIUrl":null,"url":null,"abstract":"Silica from rice husks (RH) has been used as a starting ingredient in the sonication synthesis of MCM-41 (RH-MCM-41). The impregnation of Fe3+ into RH-MCM-41 pores to produce RH-MCM-41 containing Fe2O3 and Fe (denoted as Fe2O3-Fe-RH-MCM-41) was carried out by examining the effect of various Fe3+ concentrations on the weight percent of Fe-frameworks (Fe3+ that replaces Si4+ in silicate frameworks) and Fe-non-frameworks, i.e., the iron oxide formed outside the silicate frameworks. Fe2O3-Fe-RH-MCM-41 was washed with a 0.01 M HCl solution to remove Fe-non-frameworks from the materials and give Fe-RH-MCM-41 containing Fe-frameworks. The Fe content in Fe2O3-Fe-RH-MCM-41 (Fe-total) and Fe-RH-MCM-41 (Fe-frameworks) for each sample was determined by an AAS (atomic absorption spectrometer), whereas the content of Fe-non-frameworks was calculated from the difference between Fe-total and Fe-frameworks. The XRD (X-ray diffraction) pattern, N2 adsorption-desorption isotherm profile, as well as the TEM (transmission electron microscope) image clearly demonstrate that the RH-MCM-41 exhibits an ordered p6mm hexagonal mesostructure with a large specific surface area and uniform pore size. Based on the weight percents of Fe-frameworks found in each sample, it is clear that the content of Fe-non-frameworks is significantly enhanced compared to that of Fe-frameworks when the more concentrated Fe3+ is used.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.79468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silica from rice husks (RH) has been used as a starting ingredient in the sonication synthesis of MCM-41 (RH-MCM-41). The impregnation of Fe3+ into RH-MCM-41 pores to produce RH-MCM-41 containing Fe2O3 and Fe (denoted as Fe2O3-Fe-RH-MCM-41) was carried out by examining the effect of various Fe3+ concentrations on the weight percent of Fe-frameworks (Fe3+ that replaces Si4+ in silicate frameworks) and Fe-non-frameworks, i.e., the iron oxide formed outside the silicate frameworks. Fe2O3-Fe-RH-MCM-41 was washed with a 0.01 M HCl solution to remove Fe-non-frameworks from the materials and give Fe-RH-MCM-41 containing Fe-frameworks. The Fe content in Fe2O3-Fe-RH-MCM-41 (Fe-total) and Fe-RH-MCM-41 (Fe-frameworks) for each sample was determined by an AAS (atomic absorption spectrometer), whereas the content of Fe-non-frameworks was calculated from the difference between Fe-total and Fe-frameworks. The XRD (X-ray diffraction) pattern, N2 adsorption-desorption isotherm profile, as well as the TEM (transmission electron microscope) image clearly demonstrate that the RH-MCM-41 exhibits an ordered p6mm hexagonal mesostructure with a large specific surface area and uniform pore size. Based on the weight percents of Fe-frameworks found in each sample, it is clear that the content of Fe-non-frameworks is significantly enhanced compared to that of Fe-frameworks when the more concentrated Fe3+ is used.
MCM-41孔隙中Fe3+的浸渍:Fe3+浓度对铁骨架和非铁骨架质量百分比的影响
稻壳二氧化硅(RH)是超声合成MCM-41 (RH-MCM-41)的起始原料。通过考察不同Fe3+浓度对铁骨架(在硅酸盐骨架中取代Si4+的Fe3+)和铁非骨架(即在硅酸盐骨架外形成的氧化铁)质量百分比的影响,将Fe3+浸染到RH-MCM-41孔隙中,生成含Fe2O3和Fe的RH-MCM-41(表示为Fe2O3-Fe-RH-MCM-41)。用0.01 M盐酸溶液洗涤Fe2O3-Fe-RH-MCM-41,去除非框架铁,得到含框架铁的Fe-RH-MCM-41。采用原子吸收光谱仪测定了各样品Fe2O3-Fe-RH-MCM-41中Fe(总铁)和Fe- rh - mcm -41中Fe(框架铁)的含量,根据总铁和框架铁之差计算了非框架铁的含量。XRD (x射线衍射)图、N2吸附-脱附等温线图以及TEM(透射电镜)图清楚地表明,RH-MCM-41具有有序的p6mm的六边形介孔结构,具有较大的比表面积和均匀的孔径。根据每个样品中发现的铁框架的重量百分比,可以清楚地看出,当使用更浓的Fe3+时,非框架铁的含量明显高于框架铁的含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indonesian Journal of Chemistry
Indonesian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
106
审稿时长
15 weeks
期刊介绍: Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信