{"title":"Preparation and properties of dynamic crosslinked styrene butadiene rubber","authors":"Hui Lu, Pingyin Wang, Yaozhu Tian, Zhu Luo","doi":"10.1515/polyeng-2023-0036","DOIUrl":null,"url":null,"abstract":"Abstract As the second largest synthetic rubber after styrene butadiene rubber, cis-butadiene rubber (BR) is one of the important raw materials for automobile tires and cold-resistant products. Herein, a traditional rubber preparation process was used to introduce dynamic reversible bonds into BR based on an “imitative” click reaction. Compared with traditional complex self-healing techniques, this method is undoubtedly simpler and more efficient. Dynamic reversible bonds are able to break and recombine under the stimulation of external conditions, which endow rubber with self-healing properties. We use the small biological molecule lipoic acid (LA) as a cross-linking agent and cross-link LA and BR through mechanical compounding and hot press vulcanization to obtain self-healing butadiene rubber (BLA). In addition, BLA-(Zn2+) was further prepared by introducing Zn2+ to form metal-oxygen coordination bonds with carboxyl groups. And systematically studied the effect of Zn2+ on the mechanical properties and self-healing properties of cross-linked BR. Through the combined action of disulfide bonds, hydrogen bonds and Zn2+-O coordination bonds, BLA-(Zn2+) has better properties than BLA, the tensile strength can reach 3.76 MPa, and the repair efficiency is about 82 %. This simple preparation process is certainly more cost effective.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2023-0036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract As the second largest synthetic rubber after styrene butadiene rubber, cis-butadiene rubber (BR) is one of the important raw materials for automobile tires and cold-resistant products. Herein, a traditional rubber preparation process was used to introduce dynamic reversible bonds into BR based on an “imitative” click reaction. Compared with traditional complex self-healing techniques, this method is undoubtedly simpler and more efficient. Dynamic reversible bonds are able to break and recombine under the stimulation of external conditions, which endow rubber with self-healing properties. We use the small biological molecule lipoic acid (LA) as a cross-linking agent and cross-link LA and BR through mechanical compounding and hot press vulcanization to obtain self-healing butadiene rubber (BLA). In addition, BLA-(Zn2+) was further prepared by introducing Zn2+ to form metal-oxygen coordination bonds with carboxyl groups. And systematically studied the effect of Zn2+ on the mechanical properties and self-healing properties of cross-linked BR. Through the combined action of disulfide bonds, hydrogen bonds and Zn2+-O coordination bonds, BLA-(Zn2+) has better properties than BLA, the tensile strength can reach 3.76 MPa, and the repair efficiency is about 82 %. This simple preparation process is certainly more cost effective.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.